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1 Introduction

We will be concerned with formal logic, i.e. with logical relations that apply
to all configurations of sentences that share a certain form. For example an
inference

(1)
Some C is a B.
No B is an A.
Therefore not every C is an A.

is a logical inference because it holds whatever we put for A, B and C.
There are two broad kinds of explanation of what it means to say that a

set Φ of formal sentences has the formal sentence θ as a logical consequence.
One kind of explanation is along the lines

(2) There is a proof that derives θ from Φ.

‘Proof’ can be understood in various ways here, but a standard notion is
that a proof either is or represents a single inference step or a sequence of
inference steps. We call a logical consequence along these lines a ‘proof-
theoretic consequence’. The other kind of explanation is that

(3) Every model of Φ is a model of θ.

Again we can understand ‘model’ in more than one way. The simplest way
of taking it is that every interpretation of the formal sentences in Φ∪{θ} that
makes all the sentences in Φ true makes θ true too. A logical consequence
in the sense of this second kind of explanation is called a ‘model-theoretic
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consequence’. The difference between the quantifiers ‘There is’ and ‘Every’
is a dividing line between the two kinds of explanation.

Reading any standard history of logic, you would easily get the im-
pression that model-theoretic consequence is a modern notion. In fact it is
often credited to a paper of Alfred Tarski [21] in 1936, though some histo-
rians point to a broadly similar definition given by Bernard Bolzano in his
Wissenschaftslehre [4] §147 in 1837. Proof-theoretic consequence by contrast
goes all the way back to Aristotle’s Prior Analytics [2] in the 4th century BC.

So it was quite a surprise to find a fourteenth century Baghdad logi-
cian developing formal logic in a purely model-theoretic way, using no for-
mal proofs at all. When we trace back through his logical ancestors, we
find that the origin of his model-theoretic ideas is already visible in Aris-
totle’s Prior Analytics, though Aristotle’s version looks very different from
the fourteenth century Baghdad version.

Technically this is an exciting discovery, particularly since the Bagh-
dad logician combined this model theory with the invention of logical dia-
grams several hundred years earlier than anything similar in the West. But
philosophers of logic may be disappointed, because the model-theoretic
methods are not accompanied by any philosophical analysis of the differ-
ent kinds of logical consequence. It seems to me that there is an implied
philosophical analysis of a sort in the development of logic between Aris-
totle’s Athens and fourteenth century Baghdad, though the development
is scattered through several different texts. Key moments in this develop-
ment were the elementary textbook of Paul the Persian in the sixth century,
and logical experiments of Ibn Sı̄nā in eleventh century Persia. I will men-
tion the work of Paul and Ibn Sı̄nā below, but it will take much more work
than this paper allows to establish details of the flow of ideas.

2 Some Aristotelian background

The dominant logic, in the mid nineteenth century and for some two thou-
sand years before that, was a form of logic based on Aristotle’s categorical
logic. We begin by outlining some differences and some similarities be-
tween Aristotle’s logic and logics that are familiar today.

Aristotle worked with formal sentences: sentences where some of the
words are replaced by letters. Starting from a formal sentence, we can get
an ordinary sentence (called a ‘material sentence’ by some traditional logi-
cians) by putting words or phrases in place of the letters. An ‘interpreta-
tion’ is a list of letters which assigns to each letter a word or phrase. If φ is
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a formal sentence and I is an interpretation, then we write φ[I] for the sen-
tence got from φ by putting in place of each letter of φ the word or phrase
assigned to it by I . For example at Prior Analytics 46b12–14 Aristotle gives
the interpretation

(4) A: mortal animal. B: footed. C: footless. D: human.

If we write I for this interpretation, and φ for the sentence ‘Some A is a D’,
then

(5) φ[I] is ‘Some mortal animal is a human’.

For this definition to make sense, we require that the letters of φ are among
the letters listed by I , and that the words or phrases assigned by I have a
suitable form to be put in place of the letters of φ. We will always assume
that these two requirements have been taken care of. Aristotle himself usu-
ally referred to an interpretation briefly as ‘terms’. Some Roman Empire
logicians called interpretations ‘matter’—so that an ordinary sentence re-
sults from combining matter and the ‘form’ of a formal sentence.

We say that the interpretation I ‘verifies’ the formal sentence φ, and that
I is a ‘model’ of φ, if φ[I] is a true sentence. We say that I ‘falsifies’ φ if φ[I]
is a false sentence. If Φ is a set of formal sentences, we say that I is a ‘model’
of Φ if I is a model of every sentence in Φ. (The notion of a ‘model’ is not
found explicitly in Aristotle.)

Aristotle is interested in what we can deduce from a pair of formal sen-
tences; we will refer to an ordered pair of formal sentences as a ‘premise-
pair’. But here is our first major difference between Aristotelian logic and
today’s logic. For every premise-pair that he considers, there is a small
finite number of formal sentences that Aristotle is willing to consider as
possible logical consequences of the premise-pair; we will call these the
‘candidate conclusions’ of the premise-pair, or for brevity just the ‘candi-
dates’. The candidates are specified in terms of ‘figures’; we will bypass
the details. But for example the premise-pair

(6) No C is a B. Some B is an A.

has four candidates:

(7)
Every C is an A. No C is an A.
Some C is an A. Not every C is an A.

You should be able to convince yourself that the two premises in (6) have
the logical consequence ‘Not everyA is a C’. But this formal sentence is not
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one of the four candidates, because its letters are the wrong way round. So
for Aristotle’s successors (and for Aristotle himself most of the time) it is
simply not counted as a consequence of (6).

The four sentence forms in (7) are typical examples of ‘categorical’ for-
mal sentences; Aristotle’s categorical logic is chiefly concerned with sen-
tences of these forms. There are other kinds of formal logic, for example
modal logic, but in this paper we will be mainly dealing with categorical
logic.

The logical properties of a premise-pair and its candidates don’t depend
on the choice of letters; we can make a one-to-one replacement of the let-
ters throughout the premise-pair and its candidates without affecting the
logic. Two premise-pairs, together with their candidates, are said to have
the same ‘mood’ if one comes from the other by such a one-to-one replace-
ment of letters. For us it will be convenient to choose the letters so that the
candidates always have first letter C and second letter A; the letter B can
occur in the premises. This is near enough the convention followed by both
Aristotle himself and the Arabic logicians.

Aristotle distinguishes two kinds of mood. For the first kind, at least
one of the candidates is a logical consequence of the premises. In this case
Aristotle says ‘there is a syllogism’, and he counts the strongest candidate
that is a logical consequence as the ‘conclusion’ of the premise-pair. (A
‘strongest’ such candidate is a candidate that is a logical consequence of the
premises and entails any other candidates that are logical consequences of
the premises.) We say that moods or premise-pairs of this kind are ‘pro-
ductive’.

For the second kind of mood, none of the candidates is a logical con-
sequence of the premise-pair. In this case Aristotle says ‘there is no syllo-
gism’, and we will describe the mood or premise-pair as ‘nonproductive’.
Ibn Sı̄nā called nonproductive moods ‘sterile’, because he accepted a com-
mon Arabic fiction that a conclusion is a child whose parents are the two
premises.

So for Aristotle and many other traditional logicians, the major problem
of formal logic was to determine which premise-pairs are productive and
which are non-productive, and in the productive case, to find the conclu-
sion. Because of the restriction to candidates, these problems don’t corre-
spond exactly to any problems that today’s logicians spend time on. For
this reason a modern logician aiming to make sense of the relevant tradi-
tional logical texts must be prepared to do some lateral thinking.

In the definitions above, should ‘logical consequence’ be read as proof-
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theoretic or model-theoretic? Aristotle doesn’t tell us. Some readers of
Aristotle claim to know what Aristotle believed about this, but I make no
such claim. It seems to me that one of the tasks that Aristotle’s logic left
for later generations of logicians was to get to a point where they could
meaningfully formulate and compare different definitions of logical conse-
quence.

3 Abū al-Barakāt

It’s time to introduce our Baghdad logician. His name was Abū Barakāt bin
Malka al-Baghdādı̄. He lived from some time in the 1080s to around 1170.
He was a Jew, though late in life he converted to Islam. It was only recently
realised that he must be the same person as the respected Talmudic scholar
Rabbi Baruch ben Melekh (Gil [9] p. 469).

His major philosophical work, written in Arabic, was called Kitāb al-
muctabar, which can be roughly translated as ‘A book about some things
that I considered’. The book is encyclopedic; in fact Abū al-Barakāt used
as a template for it Ibn Sı̄nā’s encyclopedia Shifā’ (‘The Cure’, written in
the 1020s). The first part of Ibn Sı̄nā’s book was on logic, and accordingly
Abū al-Barakāt devotes most of the first three hundred pages of his book
to logic. Later he moves on to physics, just as Ibn Sı̄nā did; the Kitāb al-
muctabar is said to be the first book to contain a statement that bodies fall
at a constant rate of acceleration. The book also contains rich material on
metaphysics and epistemology.

In the preface to a recent book on Abū al-Barakāt’s philosophy, Moshe
Pavlov ([18] p. ix) remarks that ‘Abū’l-Barakāt’s thought is most every-
where novel’. Certainly this is true of his approach to categorical logic.
Even his choice of sentence forms was an adjustment of what logicians be-
fore him had used. But we will come to that later; our first interest is in
how he organised his presentation.

Abū al-Barakāt recognises forty-eight moods of categorical logic. He
lists them, and for each one he says whether it is productive or nonproduc-
tive, and if it is productive he gives its conclusion. (Towards the end of the
list he starts to leave out some cases, evidently reckoning that he has said
enough to allow the reader to work out the rest.) Together with each mood
he gives evidence for his verdict on the mood. So far this is all standard;
Aristotle did much the same in Prior Analytics.

But there is a striking novelty. In every case the evidence for the ver-
dict consists of between two and four interpretations that are models of
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the premises. For nonproductive moods Abū al-Barakāt always gives three
interpretations; for productive ones the number varies. He never tells us
what we are supposed to do with these interpretations; he simply writes
down each interpretation together with a picture of it in a notation of his
own devising. The notation will be easier to make sense of when we un-
derstand what it is supposed to convey; so we will come back to it when
we understand Abū al-Barakāt’s interpretations. The obvious question is:
how do you show that a premise-pair Φ is productive, or that it isn’t, just
by giving some interpretations that are models of Φ?

Another novelty is that in all of Abū al-Barakāt’s interpretations the
nouns or noun phrases assigned to the letters describe nonempty classes.
We will describe interpretations with this property as ‘nonempty’. Abū al-
Barakāt’s usage is in sharp contrast to Ibn Sı̄nā, whose interpretations con-
tained phrases such as ‘time or situation when there is a vacuum’ (Ibn Sı̄nā
believed that there never is a vacuum), or ‘time or situation when some-
thing has infinite length’ (ditto). Ibn Sı̄nā clearly intended these phrases to
be descriptions of an empty class. Aristotle had authorised the use of exam-
ples of this kind when he invoked ‘a time when nothing is moving except
human beings’ (Prior Analytics [20] i.14, 34b11f). I will assume provision-
ally that Abū al-Barakāt’s interpretations were intended to be nonempty. A
number of things will fall into place around this assumption.

Since Abū al-Barakāt’s justifications for his verdicts consist entirely of
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interpretations, we have to suppose that he is using a notion of logical con-
sequence that can be expressed in terms of interpretations. So we should
see whether his examples fit the most obvious such notion, granting that
he is using nonempty interpretations:

(8)
Given a premise-pair Φ and a candidate θ, we count θ as a logical
consequence of Φ if and only if every nonempty model of Φ is
also a model of θ.

This defines a form of model-theoretic consequence.
If Abū al-Barakāt is using this notion of logical consequence, what does

he need to do?
First suppose his task is to prove that Φ is nonproductive, where Φ has

four candidates θ1, . . . , θ4. Then Abū al-Barakāt must produce interpreta-
tions I1, . . . , I4, not necessarily all distinct, such that each of these interpre-
tations is a model of Φ, and for each i from 1 to 4, Ii falsifies θi. As we
noted, Abū al-Barakāt in fact gives three interpretations for each nonpro-
ductive premise-pair, and we will see below that these three between them
do always falsify all four of the candidates.

Second, suppose Abū al-Barakāt has to prove that Φ is productive, and
to find its conclusion. In this case it seems that he has to consider every
nonempty model of Φ, and show that all of them are models of some fixed
candidate θ. This is one place where a glimmer of background theory peeps
out, because Abū al-Barakāt has an Arabic word for ‘is fixed or persistent’,
namely istamarra, and he seems to use it in the right places. But a major
problem for us it that if Φ has any models at all, there are bound to be
indefinitely many models of it, because Abū al-Barakāt has the whole of
Arabic available as a source for the words or phrases used in his interpre-
tations. So how can he hope to establish productivity by giving fewer than
five interpretations?

We turn to the details.

3.1 The nonproductive case

Abū al-Barakāt’s categorical logic has four sentence forms, which we as-
sume are understood as in the formulas below.

(9) ‘Every C is an A’, ∀x (Cx→ Ax).

(10) ‘No C is an A’, ∀x (Cx→ ¬Ax).
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(11) ‘Some C is an A’, ∃x (Cx ∧Ax).

(12) ‘Not every C is an A’, ∃x (Cx ∧ ¬Ax).

We note at once that an interpretation verifies (9) if and only if it falsifies
(12), and vice versa; and that an interpretation verifies (10) if and only if
it falsifies (11), and vice versa. Also every nonempty interpretation that
verifies (9) verifies (11) too, and every nonempty interpretation that verifies
(10) verifies (12) too, but both these implications fail if we leave out the
condition ‘nonempty’. No nonempty interpretation verifies both (9) and
(10).

After some slight adjustments of Abū al-Barakāt’s choice of letters, each
of his premise-pairs consists of a sentence whose letters are C and B (not
necessarily in that order) and a sentence whose letters are B and A (again
not necessarily in that order). The candidates are always the four formal
sentences (9)–(12), with the letters C and A in that order.

We can justify Abū al-Barakāt’s treatment of nonproductive moods by
the following two facts.

Fact 1 Suppose I is a nonempty interpretation for the letters C and A. Then I
falls into exactly one of the following three types:

Type One verifies ‘Every C is an A’.
Type Two verifies ‘No C is an A’.
Type Three verifies ‘Some C is an A’ and ‘Not every C is an A’.

Fact 2 Suppose Φ is a premise-pair in Abū al-Barakāt’s categorical logic. Then the
following are equivalent:

(a) Φ is nonproductive.

(b) Φ has nonempty models of all three types.

The ‘nonempty’ is needed for the first fact, because an interpretation
with C empty will verify both ‘Every C is an A’ and ‘No C is an A’. It is
also needed for (b) ⇒ (a) in the second fact; without it we have the coun-
terexample

(13) Every B is a C. No B is an A.

which by the definition (8) has the conclusion ‘Some C is anA’, though (13)
also has models of all three types if we allow models in which B is empty.
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Abū al-Barakāt’s procedure, for each of his nonproductive premise-
pairs Φ, is to give three models of Φ, the first of Type One, the second of
Type Two and the third of Type Three.

How does he find these three models? We don’t know, and quite pos-
sibly he just uses trial and error. But for a properly algorithmic procedure
he would need some way of listing systematically a collection of interpre-
tations that is bound to contain at least one of each type. This problem of
systematic listing will come up with the productive premise-pairs too. We
turn to these.

3.2 The productive case

The first problem is to reduce the indefinitely large space of possible inter-
pretations to a manageable set that still contains all the required possibili-
ties. We can get a hold on this problem by drawing a picture to represent
an arbitrary interpretation. In the picture below, the circle labelled A repre-
sents the class described by the noun or phrase assigned to A, and likewise
with the other letters. Putting a bar over the top, A represents the class of
things that are not in the class A; then for example the area labelled ABC
represents the class of things that are in B but not in either A or C.

(14)

ABC

ABC

ABC

ABC

ABC

ABC

ABC
A

B

C

Fact 3 Suppose the diagram above represents the interpretation I , and φ is a for-
mal sentence of Abū al-Barakāt’s categorical logic, using letters from among A, B
and C. Then the question whether I verifies φ is completely determined by know-
ing which of the seven enclosed labelled areas in the diagram are empty and which
are not.

In the jargon of model theory, we say that two interpretations are ‘el-
ementarily equivalent’ if they agree on which of the seven labelled areas
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they make empty. It follows from Fact 3 that when we are listing models
of a premise-pair to see which candidates they verify, we need only list
enough models to cover the 27 = 128 elementary equivalence classes. This
is a radical improvement, but it is still too large a number for it to be feasi-
ble to run through the lot every time we want to prove something. We can
cut down a little, from 128 to 109, by excluding empty interpretations.

In practice we often get a huge drop in the number of models to con-
sider when we restrict to models of the premise-pair Φ. For example let Φ
be the premise-pair

(15) Every C is a B. Every B is an A.

Then everything in C is in B, but there are two possibilities according as C
equals B or is a proper subclass of B. There are the same two possibilities
for the relationship between B and A. This gives 2× 2 = 4 possible models
to consider:

C B
A

C

A
A=B=CB=C

A=B
(i) (ii)

(iii) (iv)

For this premise-pair Abū al-Barakāt gives four interpretations that corre-
spond to these four pictures:

(16)

(i) C = human, B = animal, A = body.
(ii) C = human, B = animal, A = capable of perceiving.
(iii) C = human, B = rational, A = capable of perceiving.
(iv) C = human, B = rational, A = capable of laughing.

(You might query some of these items. But Abū al-Barakāt believed, like
Ibn Sı̄nā, that all and only human beings are rational.) Inspection shows
that each of these four models verifies ‘Every C is an A’, so Abū al-Barakāt
duly reports this as the conclusion.

The next productive premise-pair that he considers,

(17) Every C is a B. No B is an A.
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needs just two models, and Abū al-Barakāt gives two models that exactly
do the job. Again inspection finds the conclusion that Abū al-Barakāt re-
ports, namely ‘No C is an A’. But the third one that he considers,

(18) Some C is a B. Every B is an A.

needs sixteen models and Abū al-Barakāt gives only four of them. The
fourth needs twelve and again he gives only four of them.

One can sympathise with Abū al-Barakāt not wanting to set out all six-
teen possibilities. But is there any particular reason why he gave up at
four? Not as far as I can see. If he already knew that the premise-pair (18)
was productive, he would be entitled to stop as soon as only one of the can-
didates was mustamirr, i.e. persistently verified by every model examined
so far. But in fact, if I read his assumptions correctly, he stopped before
reaching any model that falsifies ‘Not every C is an A’, which is not the
conclusion. So he probably just reckoned four was enough to show willing
and to give the reader the idea of what was needed.

3.3 The pictures

Abū al-Barakāt accompanies each interpretation with a line diagram, which
he calls a ‘figure’ (shakl) or a ‘representation’ (tamthı̄l). So the diagrams rep-
resent interpretations up to elementary equivalence; they don’t represent
sentences. This makes them different from the diagrams of Euler and Venn,
and more like those that Gergonne [8] gave in 1816/7:

(19)

 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 20, Number 3, Sept. 1955

 THE GERGONNE RELATIONS

 J. A. FARIS

 Introduction. In this paper I am going to set forth a formal system

 based on five inter-class relations. These relations exist respectively between
 a class of a's and a class of b's.

 (i) if and only if every a is a b and every b is an a,
 (ii) if and only if every a is a b and not every b is an a,

 (iii) if and only if it is not the case that either every a is a b or every b

 is an a or no a is a b,
 (iv) if and only if every b is an a and not every a is a b,
 (v) if and only if no a is a b.

 These relations between classes, which correspond, as will be seen, to the
 five relations between two circles a and b shown in the well-known Eulerian

 diagrams,

 (i) ~~~(ii) (iii) (iv) (v)

 are of course connected in an intimate way with the four forms of propo-
 sition, A, E, I, 0, of the traditional syllogistic logic. The French mathema-
 tician, J. D. Gergonne, seems to have been the first to recognize these

 relations explicitly and to understand their importance in syllogistic

 theory.' It is therefore appropriate that they should be called by his name.
 Gergonne first of all showed with reference to these relations what are

 the sufficient and necessary conditions of the truth of propositions of each
 of the four traditional forms: for example, an A proposition, 'All a is b'
 is true if and only if either the first or the second relation exists between

 the class of a's and the class of b's. He was thus able to explain and de-

 monstrate neatly the rules of opposition of the traditional logic. He then
 went on to examine the possible combinations of ways in which for a given
 relation (say the first) between a class of a's and a class of c's a third class
 of b's can be related to each of the other two, and he made out a table
 showing for each of the possible relations a-c the possible combinations
 of relations a -b and b-c. On the basis of all this he was able to make it
 evident which of the 256 possible syllogistic moods must be valid and
 which invalid.

 Received December 24, 1954.
 1 J. D. Gergonne, Essai de dialectique rationelle, Annales des mathematiques

 pures et appliquees, Vol. 7, (1817).

 207
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(I take the pictures from Faris [6]. Gergonne himself didn’t draw these
diagrams, but he described them very clearly in French prose.) Abū al-
Barakāt aims to do the same thing but with lines instead of circles. Thus
Gergonne’s third diagram, representing that the two classes straddle each
other, appears in the Kitāb al-muctabar as

(20)
C

A
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Gergonne’s fifth diagram, representing that the two classes are disjoint, ap-
pears in the Kitāb al-muctabar as

(21)

C

A

Let me make three preliminary observations about these line diagrams of
Abū al-Barakāt.

First, there is no natural way of representing empty classes in Abū al-
Barakāt’s notation. Since this is the first time that such a notation appears
in the literature, and also the first time we meet a logician who seems to be
systematically avoiding the use of empty classes in his interpretations, we
can reasonably ask if these two facts are related. Did Abū al-Barakāt reach
his procedures by experimenting with the diagrams, so that the avoidance
of empty classes was built into the procedures from the outset?

Second, Abū al-Barakāt differs from Gergonne in using these diagrams
to represent relationships between three classes, not just two. If one were to
generalise Gergonne’s figures to three classes, one would need 109 figures
rather than the five in (19) above. (And for the record, for four classes Ger-
gonne would need 32,297 figures. There is a double exponential involved.)
Not all of the 109 diagrams for three classes can be flattened down into
line diagrams. For example there is no horizontal line representation of an
interpretation where all seven labelled areas of (14) are empty except for
ABC, ABC and ABC. Interpretations with this property are never needed
for any of Abū al-Barakāt’s productivity or nonproductivity proofs, luckily
for him.

Margaret Baron [3] reviews the early history of logic diagrams, and
mentions that Leibniz experimented with line diagrams. She cites two ex-
amples:

(22)

 THE HISTORICAL DEVELOPMENT OF LOGIC DIAGRAMS 117

 "Je tiens que l'invention de la forme des syllogismes est une des
 plus belles de l'esprit humain, et meme des plus considerables. C'est
 une espece de mathematique universelle, dont l'importance n'est
 pas assez connue; et l'on peut dire qu'un art d'infaillibilite y est
 contenu, pourvu qu'on sache et qu'on puisse s'en bien servir, ce
 qui n'est pas toujours permis."

 Nonetheless, he considered the logic of Aristotle imperfect and
 wanted to complete it. In so doing, he explored at some length the
 possibility of representing syllogistic arguments by means of
 geometric figures developing not only the now familiar circle
 diagrams attributed to Venn and Euler, but also an ingenious
 linear form which he considered clearer and easier to work with.

 The four standard categorical propositions are represented as
 follows:

 B , B B

 All B is C No B is C

 C ! * :, c' c'

 Some B is C Some B is not C

 FIG. 5

 In the circle diagrams the letters are placed carefully to indicate
 the nature of the proposition. Thus, for some B is C, the letter B is
 placed in the space common to both circles: for some B is not C
 it is placed inside B but outside C. In the line figures the concepts
 are represented by parallel straight lines: the dotted lines denote
 the sense of the proposition and delimit in each line the segment
 which is under consideration. In affirmative propositions the dotted
 lines cut off real segments on each parallel; in negative propositions
 the dotted lines pass entirely outside one, or both, of the parallels.

 From these basic constructions Leibniz went on to represent all
 the standard syllogisms by means of three circles* or alternatively
 three straight lines. The circle diagrams have now become so

 * Leibniz uses an ellipse wherever it appears more convenient.
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Both these examples are intended to represent sentences, not elementary
equivalence classes of models; this is the reason for the vertical dashed
lines. Baron also points out that Ramon Llull already had some kind of
circle diagrams in the 13th century; but these were intended for some not
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entirely clear religious purpose, and their logical content is dubious. Abū
al-Barakāt’s line diagrams were undoubtedly part of a logical procedure.
He takes the history of logic diagrams back to the twelfth century.

Third, the only publications known to me of the relevant passages in
Kitāb al-muctabar are taken from the edition published in Hyderabad in
1938/9. In this edition some of the diagrams fit exactly with the style il-
lustrated by (20) and (21), and the others have at least a statistical tendency
in that direction. But quite a few of the diagrams seem to be drawn at ran-
dom. One possible explanation is that the copyists or printer had no idea
what the diagrams were about. This seems the best explanation of the er-
rors in Nas. ı̄r al-Dı̄n al-T. ūsı̄’s account of these diagrams in his 13th century
Persian text Asās al-Iqtibās [22] pp. In this edition there are some gross errors
in the printing of the diagrams; also (granting the weakness of my Persian)
it is not clear that T. ūsı̄ understood the diagrams—he seems to think they
represent sentences.

So either the copyists and printer made a shipwreck of Abū al-Barakāt’s
diagrams, or he himself had a remarkably hippie attitude towards his own
invention. Sight of a manuscript of the Kitāb might clarify the situation, but
I have not so far managed to track one down. (I hope to pursue this issue
further, together with other questions about Abū al-Barakāt’s diagrams, in
joint work with Amirouche Moktefi.)

Before we leave Abū al-Barakāt, there are a couple of observations to
make on the theory behind his diagrams. First, we have seen that every-
thing fits together neatly under the assumption that he intended all his
interpretations to be nonempty. As far as I know, he was the first logician
to assume that in categorical logic we are dealing with nonempty classes.

Second, Abū al-Barakāt makes an interesting remark about the produc-
tive premise-pair

(23) Not every C is a B. Every A is a B.

He says that this premise-pair needs two models (falsely—it actually needs
twelve). He observes (correctly) that all the models verify ‘Not every C is
an A’, so that this is the conclusion. (Again correct; one of his diagrams
rules out the stronger candidate ‘No C is an A’.) Then, atypically, he com-
pares with Aristotle’s procedure. For this premise-pair Aristotle uses a jus-
tifiable but slightly troublesome procedure called ‘ecthesis’, which involves
introducing a fourth letter. Abū al-Barakāt sketches Aristotle’s proof. Then
he comments ‘The representation with diagrams explains the conclusion
without needing any of that’ ([1] 139.14f).
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4 Ibn Sı̄nā

Was Abū al-Barakāt’s use of model theory entirely his own idea, or did he
build on work of earlier logicians?

We are in speculative territory here. But for the nonproductivity proofs
there are strong indications of a similar movement of thought in Ibn Sı̄nā’s
logical writings, and particularly in section vi.2 of the book Qiyās ([16], ‘Syl-
logism’) of his Shifā’. The Shifā’ is the work that Abū al-Barakāt used as his
template for the Kitāb al-muctabar, so there is every reason to think that Abū
al-Barakāt knew this work well.

This section is one of the richest and most radical of Ibn Sı̄nā’s contribu-
tions to formal logic. Ibn Sı̄nā is introducing a logic of his own invention,
extending the hypothetical logic that al-Fārābı̄ had reported from sources
in Roman Empire logic. The description below is an oversimplification,
cutting through to what is relevant to Abū al-Barakāt’s logic. The papers
[13] and [14] study this section of Qiyās more directly, referring to the logic
involved as PL3.

PL3 can be seen as a fragment of boolean algebra, using eight sentence
forms:

(24)
C ⊆ A C ⊆ A C ⊆ A C ⊆ A

C 6⊆ A C 6⊆ A C 6⊆ A C 6⊆ A

where C is the boolean complement of C. The candidates for a premise-
pair are precisely the eight sentences above, with letters C and A in that
order. Ibn Sı̄nā lists premise-pairs and indicates which are productive (and
with what conclusion), and which are sterile. He discusses roughly sixty
premise-pairs in detail. Some forty of the ones that he discusses are pro-
ductive. Seventeen are sterile (though he mistakenly takes one of these to
be productive).

For the productive premise-pairs, he derives a conclusion using a proof
theory based on Aristotle’s proof theory for categorical logic. This part of
the logic is set out clearly and explicitly; the only mistakes are occasional
carelessnesses.

For the sterile premise-pairs, Ibn Sı̄nā’s language indicates that he is fol-
lowing the method that Aristotle devised for proving nonproductivity in
categorical logic. But this method is invalid for PL3, and Ibn Sı̄nā’s calcu-
lations can be read as following a different method. This other method is
sound, and he carries it through successfully in about two of every three

14



cases. It is also thoroughly model-theoretic. But in view of both IS’s mis-
leading descriptions and the cases where his calculations seem not to work,
there has to be a doubt whether he really knows what he is doing.

4.1 Aristotle and the method of pseudoconclusions

Let me explain Aristotle’s procedure for proving nonproductivity in cat-
egorical logic. Aristotle works with four main sentence forms, which are
often read as follows:

(25) ‘Every C is an A’, (∀x (Cx→ Ax) ∧ ∃xCx).

(26) ‘No C is an A’, ∀x (Cx→ ¬Ax).

(27) ‘Some C is an A’, ∃x (Cx ∧Ax).

(28) ‘Not every C is an A’, (∃x (Cx ∧ ¬Ax) ∨ ∀x¬Cx).

The formulas express a reading of Aristotle’s sentences that was first made
explicit by Al-Fārābı̄ in the 10th century and more fully by Ibn Sı̄nā in the
11th century. Stephen Read has argued recently [19] that these formulas are
faithful to Aristotle’s intentions.

Aristotle establishes the productivity of a premise-pair by stating its
conclusion, and then either giving a formal proof of the conclusion from
the premises, or stating that the conclusion is self-evidently a consequence
of the premise-pair so that no proof is needed.

Aristotle proves the nonproductivity of a premise-pair Φ as follows.
The candidates are the four formal sentences (25)–(28), with the letters C
and A in that order. We write down two interpretations I and J such that

(a) Both I and J are models of Φ.

(b) I verifies ‘Every C is an A’.

(c) J verifies ‘No C is an A’.

A modern understanding of Aristotle’s method is to observe that the given
data show that there is no candidate θ such that

(29) Every model of Φ is a model of θ.

The reasoning is as follows. Suppose θ is either ‘NoC is anA’ or ‘Not every
C is an A’. Then the model I of Φ falsifies θ since I verifies ‘Every C is an
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A’ (which now includes the clause ∃xCx). Alternatively suppose θ is either
‘Every C is an A’ or ‘Some C is an A’. Then the model J of Φ falsifies θ
since J verifies ‘No C is an A’.

Now (29) is a definition of model-theoretic consequence, the same as
our earlier definition (8) except that in (29) we impose no requirement that
the models are nonempty. So in this revised sense, Aristotle’s data show
that no candidate is a model-theoretic consequence of Φ. To complete the
argument we need only suppose that whatever Aristotle understands by θ
being a syllogistic consequence of Φ, it implies that θ is a model-theoretic
consequence of Φ. (Some writers paraphrase this supposition as ‘Aristotle’s
notion of consequence is truth-preserving’.)

However, Aristotle himself never mentions model-theoretic consequence.
All he requires is that I verifies the sentence ‘Every C is an A’ and J veri-
fies the sentence ‘No C is an A’. In Aristotle’s own terminology these two
sentences are ‘conclusions’ got from I and J ; to avoid confusion with logi-
cal conclusions I refer to them as (formal) ‘pseudoconclusions’ for the two
interpretations. These notions and the relevant texts are analysed further
in [11] and [14].

4.2 Ibn Sı̄nā and the method of complementary models

Ibn Sı̄nā claims to show that premise-pairs in PL3 are sterile by giving two
models of Φ, one I for which C ⊆ A is a pseudoconclusion and one J for
which C ⊆ A is a pseudoconclusion. But this won’t work. The interpre-
tation I falsifies C 6⊆ A, but not any of the other candidates. Likewise J
falsifies just one candidate. Since there are now eight candidates to be fal-
sified, the arithmetic doesn’t add up.

But there is an alternative reading of what Ibn Sı̄nā is doing. Forget
about the pseudoconclusions. Each interpretation verifies exactly four of
the candidates and falsifies the remaining four. So if Ibn Sı̄nā can find mod-
els I and J such that I verifies exactly the candidates that J falsifies, then
every candidate will be falsified by one of them, and hence we will have a
direct proof that no candidate is a model-theoretic consequence of Φ. We
describe such a pair of interpretations as ‘complementary’.

At this point we must go to the sixteen pairs of interpretations that Ibn
Sı̄nā offers in his sixteen sterility proofs, and check whether they are in fact
complementary models of the relevant premise-pairs. The results can be
found in [14]. In sum, five of the sterility proofs seem to be fatally flawed.
Ten can be read as valid sterility proofs along the lines we sketched in the
previous paragraph, and the remaining one proof can be fairly easily re-
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paired to form a valid proof. This is a much better result than chance, but
also much less than 10 out of 10 for Ibn Sı̄nā.

There is a twist that should be mentioned. For the sterile premise-pair

(30) C ⊆ B. B ⊆ A.

Ibn Sı̄nā gives the two interpretations

(31)
I : C = human, B = stone, A = mineral.
J : C = human, B = stone, A = bodily object.

Certainly I and J are models of the premises. But consider the candidate

(32) C ⊆ A, i.e. A ⊆ C.

If I and J are a complementary pair, then exactly one of them verifies this
sentence. It seems to me that this requires that exactly one of these two in-
terpretations has its universe restricted to humans. For most of Ibn Sı̄nā’s
rescuable sterility proofs, rescuing them mainly consists of assigning uni-
verses to interpretations.

Now Ibn Sı̄nā never mentions restriction of the universe. But in some
cases it is implied, for example when in another logic he restricts the in-
terpretations of certain variables to be times or situations. It is also very
natural to restrict the universe when one is taking complements of classes;
this is exactly the context in which De Morgan introduced universes into
modern logic ([5] p. 2f). The domains of structures in today’s model theory
owe something to De Morgan’s ‘universes’, though probably the domains
of algebraic structures in Grassmann, Dedekind and Weber were a stronger
influence.

In sum, Ibn Sı̄nā’s sterility proofs in Qiyās vi.2 can mostly be read as ap-
plications of model-theoretic consequence in a rather full-blooded sense—
the models, with their universes, can be taken as models in a fully modern
sense. But this reading attributes to Ibn Sı̄nā more understanding than he
probably had. Nevertheless there is enough sense in Ibn Sı̄nā’s sterility
proofs to allow the possibility that they helped to inspire Abū al-Barakāt’s
work in categorical logic.

There are other things in Ibn Sı̄nā that might have pointed Abū al-
Barakāt in the same direction.
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5 Paul the Persian

In the middle of the 6th century Paul the Persian published an elementary
introduction to logic [17]. There are strong indications that this treatise is a
summary of the introductory logic course taught at the School of Alexan-
dria; this school had a proud history as one of the main philosophical cen-
tres of the Roman Empire. (See for example Gutas [10] on Paul the Persian
and the curriculum at Alexandria.)

The final sections of Paul’s treatise are about categorical syllogistics. He
lists the moods, and as he comes to each mood he tells us whether it is
productive (and with what conclusion) or nonproductive. So far this is
exactly what both Aristotle and Abū al-Barakāt do. But there are major
differences, particularly in his treatment of the productive moods. Unlike
Aristotle, Paul doesn’t accompany the productive moods with either proofs
or statements that they are self-evident. He does tell us Aristotle’s proofs
for the productive moods, but he postpones these to a final section of his
treatise, after the main listing of the moods. Unlike Abū al-Barakāt, Paul
doesn’t offer model-theoretic arguments to support the productive moods.

Paul adds a feature which is very suggestive for the topic of this pa-
per. He presents the productive moods and the nonproductive ones in a
way designed to make them seem parallel. For example every premise-
pair has a conclusion. In the productive case there is just one conclusion,
and it is the logical conclusion from the premises; taking a word from the
Prior Analytics, Paul calls it a ‘necessary’ conclusion. In the nonproductive
case there are two conclusions, and they are what we called pseudoconclu-
sions in the previous section; Paul calls them ‘non-necessary’ conclusions.
Each conclusion is accompanied by an interpretation that is a model of the
premises; in the productive case the interpretation is just for illustration,
while in the nonproductive case the two interpretations generate the pseu-
doconclusions.

For any reader able to think below the surface of the text, there is a clear
message here. Every premise-pair has a family of candidates that are veri-
fied by models of the premise-pair; the difference between the productive
and the nonproductive case is that in the former, the same candidate is ver-
ified by all models. From this conclusion it’s a natural step to try to find
the ‘necessary’ conclusions by listing models, just as Abū al-Barakāt does.
But as far as we know, Abū al-Barakāt was the first person to take this step,
and we don’t know what role Paul the Persian or the Alexandrian tradition
played in Abū al-Barakāt’s thinking.

Though Paul certainly downgrades the role of formal proof in categor-
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ical logic, it’s very striking how close he stays to the Prior Analytics in both
the terminology and the logical content of his treatment of the categori-
cal moods. This fact should give pause to those (for example Hugonnard-
Roche [15] p. 272f) who see in Paul’s treatment of logic a move away from
Aristotle’s ‘formal’ theory and towards a more ‘material’ understanding.
One might equally well label as unaristotelian the accounts of Aristotle’s
logic that stress his formal proofs and ignore his nonproductivity argu-
ments.

In fact both proof-theoretic consequence and model-theoretic consequ-
ence are at least implicit in Aristotle’s presentation of logic. Arguably the
main difference between the two in his treatment is not that he is more
attached to proofs than to models. Rather it is that proofs call on less back-
ground theory; everything is there on the page. With interpretations and
models, by contrast, one needs to have a good understanding of metatheo-
retical notions such as truth, interpretation or the definition of φ[I] in Sec-
tion 2 above. These metatheoretical notions took a long time to mature. As
late as 1906 Gottlob Frege was declaring that proofs of ‘the independence
of a thought from a group of thoughts’ were a move into ‘new territory’ for
which there was not yet any ‘mathematical’ theory available ([7] p. 425f).
Eight hundred years before Frege, Abū al-Barakāt clearly knew what he
was doing with interpretations and models, but he had no vocabulary for
explaining it.
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