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The year is 1928.
We imagine ourselves in Alfred Tarski’s seminar in Warsaw.
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Our problem: To analyse the additive group Z of integers.

We will use a method of research called
elimination of quantifiers,
developed since 1915 by Löwenheim, Skolem, Bernays,
Langford and others.

Note: At this date model theory has not yet been invented.
Anatoliı̌ Mal’tsev will invent it in 1940,
and Tarski will name it in 1954.
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Step One: Define the domain,
i.e. the set of individuals that formthe subject matter.
Our domain is the set of integers.
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Step Two: Determine the relevant primitive concepts.
These are

1. The concept ‘integer’,
expressed by a relation symbol Z(x).

2. The concepts ‘zero’, ‘one’,
expressed by individual constant symbols 0, 1.

3. The concepts ‘plus’ and ‘minus’,
expressed by a 2-ary infixed function symbol +

and a 1-ary function symbol −.
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The language of Z, L(Z) or L for short,
consists of terms and formulas.

The set of terms of L is the smallest set τ of strings
of symbols that contains

1. 0, 1;

2. each variable xi (i a natural number);

3. (s+ t) where s and t are in τ ;

4. (−s) where s is in τ .
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The set of formulas of L is the smallest set Φ of strings
of symbols that contains

1. (s = t) where s and t are terms;

2. (¬φ), (φ ∧ ψ), (φ ∨ ψ) where φ and ψ are in Φ;

3. ∀x((¬Z(x)) ∨ φ) and ∃x(Z(x) ∧ φ)

where x is any variable and φ is in Φ.

Note: In about 1950 Tarski dropped the use of Z(x) and
instead read ∀x and ∃x as ranging over all the individuals
of Z. We will do the same; this simplifies notation.
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Meanings of the logical symbols:

= equals

¬ not

∧ and

∨ or (including ‘and’)

∀ for all

∃ there is

With these meanings we can read any formula
as expressing something about Z.
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The formulas that say something true or false about Z

are called sentences.

In fact sentences are those formulas in which every
occurrence of a variable x is bound by a quantifier ∀x or ∃x.

If a formula φ has some variables with free occurrences,
say x1, . . . , xn,
then by assigning integers a(x1), . . . , a(xn) to these variables
we again make φ into a true or false statement about Z.
The assignment a satisfies φ if this statement is true.
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Main aim: We will assign to each formula φ
a value |φ| which will tell us

• (if φ is a sentence) whether φ is true or false;

• (if φ is not a sentence) which assignments satisfy φ.

The value |φ| will eventually be defined by recursion,
but we don’t yet know what to recurse on.
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Step Three. We choose a set of basic formulas.
These are formulas for which we can get the information
about truth or satisfaction very easily.

Our intention is to choose each |φ| so that

• |φ| is a formula that is equivalent to φ in Z,
i.e. satisfied by the same assignments;

• |φ| is a boolean combination (i.e. by ¬, ∧, ∨) of
basic formulas;

• when φ is basic then |φ| = φ.
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(3.1) First suggestion for basic formulas:
the atomic formulas, i.e. formulas of the form (s = t).

If integers are assigned to all variables in s or t,
then we can easily calculate the integer values of s and t,
and so check whether the statement (s = t) is true.
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Step Four: We choose a set of axioms.
These are sentences that satisfy three requirements:

• ‘Their truth should appear evident to us.’ (Tarski, Ch. 6
‘On the deductive method’, in ‘Introduction to Logic and
to the Methodology of the Deductive Sciences’, 1936.)

• They should be adequate to prove all true basic
sentences and the negations of all false basic sentences.

• They should be adequate to prove all the sentences

∀x1 . . .∀xn((φ ∧ |φ|) ∨ ((¬φ) ∧ (¬|φ|)).
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(4.1) First attempt at axioms:

ζass : ∀x0∀x1∀x2(((x0 + x1) + x2) = (x0 + (x1 + x2))).

ζcom : ∀x0∀x1((x0 + x1) = (x1 + x0)).

ζzero : ∀x0((x0 + 0) = x0).

ζinv : ∀x0((x0 + (−x0)) = 0).
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These axioms are all true,
and they allow us to use abelian group notation.

Also they prove all true basic sentences.

Do they prove all negations of false basic sentences?
NO. They don’t prove 0 	= 1, 0 	= 2 etc.

So we need more axioms.
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(4.2) Second attempt at axioms:
The previous axioms plus

ζone : ¬(0 = 1).

θn : ∀x0 (nx0 = 0 → x0 = 0) (n > 1)
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Step Five: We try to define |φ| for all formulas φ.

If φ is basic, or a boolean combination of formulas ψ
for which |ψ| is defined, then we know what to do.
For example we put

|(¬ψ)| = (¬|ψ|).
The significant case is where φ begins with a quantifier
(hence the name quantifier elimination).
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Now assuming ψ is a boolean combination of basic
formulas, we can put the boolean combination into
disjunctive normal form, say (ψ1 ∨ . . . ∨ ψm)

where each ψi is a conjunction (χ1 ∧ . . . ∧ χk), and each χj

is either a basic formula or a negation of a basic formula.

Since ∃x(ψ1 ∨ . . . ∨ ψm) is equivalent to (∃xψ1 ∨ . . . ∨ ∃xψm),
we can assume φ is

∃x(χ1 ∧ . . . ∧ χk)

with the χj as before. Such a φ is called a p.p. formula.
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Example: φ is

∃x0 (5x0 + 3x1 + 2 = 0 ∧ 3x0 	= 2x2).

Since the axioms say we have a torsion-free abelian group,
we can multiply through and rearrange:

∃x0 (−3x1 − 2 = 15x0 ∧ 10x2 	= 15x0).

This is equivalent to

(∃x0 (−3x1 − 2 = 15x0) ∧ 10x2 	= −3x1 − 2)

so we need only define |∃x0(−3x1 − 2 = 15x0)|. Can we?
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Here follow three days of attempts to find
a boolean combination of basic formulas equivalent to

∃x0(y = 15x0).

On day four we give up
and admit we need to expand the class of basic formulas.
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(3.2) Second suggestion for basic formulas:

• The atomic formulas, as before.

• All formulas

∃x(t = pnx)

where t is a term, p a prime and n a positive integer.
We write this formula as

(pn|t)
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We have to go back and check earlier results.

Do our axioms still prove all true basic sentences? YES.

Do our axioms prove the negations of all false basic
sentences? NO.
They don’t prove (2 	 | 1), i.e. ¬∃x(1 = 2x).

So we must expand the axioms again.
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(4.3) Third attempt at axioms:
The previous axioms plus

ηp : (p 	 | 1) (p any prime)

The new axiom set does prove all negations of
false basic sentences.

23

24

Unfortunately we now have new p.p. formulas.

Example:

∃x0(5x3 = 2x0 ∧ (22|x0) ∧ (23 	 |x0)).

As before, we can multiply through and rearrange:

(∃x0(5x3 = 2x0) ∧ (23|5x3) ∧ (24 	 |5x3)).

((2|5x3) ∧ (23|5x3) ∧ (24 	 |5x3)).

Success!

24



25

Example:

∃x0(4x0 	= x1 ∧ (7|x0 + 3) ∧ (13 	 | 5x0 − x2)).

Here we can’t use an equation to remove x0 from
all other conjuncts.
Instead we show that if x0 = k solves
(7|x0 + 3) ∧ (13 	 | 5x0 − x2)) (for a given value of x2),
then so does x0 = k + (7 × 13)m for any m.

So the inequality is irrelevant and can be ignored.
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Example:

∃x0 ((2 	 |x0) ∧ (2 	 |x0 + 1)).

We know this is false, but can we prove that from the
axioms? NO.

(4.4) Fourth attempt at axioms:
The previous axioms plus

κp : ∀x0((p|x0) ∨ . . . ∨ (p|x0 + p− 1)) (p prime)
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Step Six: Check that this is enough.
With this set of axioms and this set of basic formulas,
we can define |φ| as required, for all formulas.
Then write it all out and submit it for publication.

The published version will need a definition of |φ|
by recursion on some kind of rank.
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We can define a suitable rank by putting:

• basic formulas have rank 0;

• a boolean combination of formulas with
at least one of rank � r has rank � r;

• if φ has rank � r then ∃xφ has rank � r + 1.

The rank of a formula is the minimum possible
by this definition.

Tarski’s student Mojżesz Presburger did this work in 1928
and published in 1930.
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Tarski and students applied quantifier elimination to:

• The field of real numbers

• Algebraically closed fields of a given characteristic

• Boolean algebras

• The natural numbers with +

• Abelian groups.
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Application 1: Given any sentence φ of L,
we can compute |φ| and then calculate whether |φ| is true.
This gives a decision procedure for first-order statements
about the additive group of integers.
In 1957 Martin Davis implemented it
on the Johnniac computer.
In 1973 Michael Fischer and Michael Rabin showed that
any algorithm solving this problem must have
super-exponential time complexity.
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Application 2: The equivalence of φ and |φ| is provable
from the axioms.
If φ is true then |φ| is also provable from the axioms,
and so φ itself is provable from the axioms.

Hence the axioms allow us to prove
every true statement of L.
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Application 3: Suppose A is another structure for which
the language L makes sense,
e.g. another group.
We say A is elementarily equivalent to Z, A ≡ Z,
if the same sentences of L are true in both structures.

We have shown that A ≡ Z if and only if
all the axioms are true in A.
For example Z ≡ Z

⊕
Q.
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In 1949 Tarski published several results of quantifier
elimination, for example for algebraically closed fields.
In his PhD thesis (1949) Abraham Robinson
independently found much more algebraic ways of
getting the same results,
using the compactness theorem for first-order logic
and homomorphisms between structures.
So Robinson’s methods were model-theoretic,
as opposed to Tarski’s syntactic approach.
Later model-theoretic approaches (e.g. back-and-forth)
eliminated the compactness theorem.
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Application 4: Definition of truth.
In 1930 Tarski saw that we get a definition of
‘true sentence of a formalised language’ if we can
define |φ| suitably, by recursion on the complexity of φ.
He had the idea of taking |φ| to be
the set of assignments that satisfy |φ|.
Later semanticists generalised this:
the meaning |φ| of a complex expression φ is defined
in terms of |ψ| for the immediate constituents ψ of φ.
A recursive definition of this kind is called compositional.
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Sadly, Tarski didn’t always appreciate the advances
built on his work.

In 1972 he told Barbara Partee that his truth definition
was not compositional. (Of course it is.)

In 1977 he said that the method of quantifier
elimination gives

a more direct and clearer insight than the modern
more powerful methods.
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