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1 The boundaries of the subject

In 1954 Alfred Tarski [210] announced that ‘a new branch of metamathemat-
ics’ had appeared under the name of the theory of models. The subject grew
fast: the Omega Group bibliography of model theory in 1987 [148] ran to
617 pages. By the mid 1980s there were already too many dialects of model
theory for anybody to be expert in more than a fraction. For example very
few model theorists could claim to understand both the work of Zilber and
Hrushovski at the edge of algebraic geometry, and the studies by Immerman
and Vardi of classifications of finite structures. And neither of these lines
of research had much contact with what English-speaking philosophers and
European computational linguists had come to refer to as ‘model-theoretic’
methods or concepts.

Nevertheless all these brands of model theory had common origins and
important family resemblances. Some other things called models definitely
lie outside the family. For example this chapter has nothing to say about
‘modelling’, which means constructing a formal theory to describe or ex-
plain some phenomena. Likewise in cognitive science the ‘mental models’ of
Gentner and Stephens [67] or Johnson-Laird [100] lie outside our topic.

All the flavours of model theory rest on one fundamental notion, and that
is the notion of a formula φ being true under an interpretation I. The classic
treatment is Tarski’s paper [202] from 1933. In this paper Tarski supposes
that we have a language L with a precisely defined syntax. Ignoring punc-
tuation, the symbols of L are of two kinds: constants and variables. The
constants have fixed meanings; they will usually include logical expressions
such as ‘and’ and ‘equals’. The variables have no meaning, but (to short-
circuit Tarski’s very careful formulation a little) we can assign an object to
each variable, and ask whether a given formula φ of L becomes true when
each variable is regarded as a name of its assigned object. The grammatical
categories of the variables determine what kinds of object can be assigned to
them; for example we can assign individuals to individual variables, classes
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of individuals to class variables, and so on. If A is an allowed assignment of
objects to variables and A makes φ true, then A is said to satisfy φ, and to
be a model of φ, and φ is said to be true in A. (In [202] Tarski says ‘satisfy’,
and moves on to give a definition of ‘true’ in terms of ‘satisfy’.)

One of Tarski’s main aims in this paper was to show that for certain
kinds of language L, the relation ‘A satisfies φ’ is definable using only set
theory, the syntax of L and the notions expressed by the constants of L.
Thus one speaks of Tarski’s definition of truth (or of satisfaction).

In several papers around 1970, Tarski’s student Richard Montague [138]
set out to show that Tarski’s treatment applies to some nontrivial fragments
of English. This work of Montague is a paradigm of what philosophers
and linguists call model-theoretic semantics. Tarski himself ([202] §6 end)
foresaw this development, but he suspected that it could only be carried
through by rationalising natural language to such an extent that it might
not ‘preserve its naturalness and [would] rather take on the characteristic
features of the formalized languages’. For the rest of this chapter, we shall
only be concerned with formulas of artificial languages.

Tarski’s 1933 paper brought into focus a number of ideas that were in
circulation earlier. The notion of an assignment satisfying a formula is
implicit in George Peacock ([151], 1834) and explicit in George Boole ([25]
p. 3, 1847), though without a precise notion of ‘formula’ in either case. The
word ‘satisfy’ in this context may be due to Edward V. Huntington (for
example in [97] 1902). Geometers had spoken of gypsum or paper ‘models’
of geometrical axioms since the 17th century; abstract ‘models’ appeared
during the 1920s in writings of the Hilbert school (von Neumann [147] 1925,
Fraenkel [59] p. 342, 1928).

In 1932 Kurt Gödel wrote to Rudolf Carnap that he was intending to
publish ‘eine Definition für ‘wahr’ ’ ([73]). He never published it. We know
that by 1931 Gödel already had a good understanding of definability of
truth in systems of arithmetic (see Feferman [57]); there is no solid evidence
on whether he had thought about general set-theoretic definitions of truth
before Tarski’s paper was published.

2 One structure at a time

In Tarski’s paper [202] he gives four examples of truth definitions, one of
which (in his §3) he describes as ‘purely accidental’ because it doesn’t follow
the general strategy of his main definition. In this example he considers
what today we would call the structure A of all subsets of a given set a, with
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relation ⊆; he discusses what can be said about A using the corresponding
first-order language L. (This may be an anachronism; one could also describe
his example as the structure consisting of the set a with no relations, and a
corresponding monadic second-order language.) Tarski works out an explicit
definition of the relation ‘φ is true in A’, where φ ranges over the sentences
of L. To bring this example within his scheme, Tarski counts the symbol ⊆
as a constant; the two quantifiers are constants too, understood as ranging
over the set of subsets of a.

Tarski doesn’t call A a structure—in fact he doesn’t even have a symbol
for it—but the following features make it an example of what later became
known as a structure. It carries a domain or universe (the set of subsets of
a); it also carries a binary relation on the domain, labelled by the symbol
‘⊆’. A structure can also carry labelled relations and functions of any finite
arity on the domain, and labelled elements of the domain. Structures in
this sense are an invention of the second half of the 19th century—for exam-
ple Hilbert handled them freely in his Foundations of Geometry ([85] 1899).
Richard Dedekind ([44] 1871 and [39] 1872) frequently used the name System
for structures (and also for sets—apparently he thought of a structure as a
set that comes with added features). Weber and Hilbert spoke of ‘Systeme
von Dingen’, to distinguish from axiom systems. In model theory the name
‘system’ persisted until it was replaced by ‘structure’ in the 1950s, it seems
under the influence of Abraham Robinson [162] and Bourbaki [28]. (Au-
gustus De Morgan introduced the term ‘universe’ in 1846 [40], to mark the
fact that one deals with a determinate set of things which may be different
in different discourses. ‘Gebiet’—which is ‘domain’ in German—is a loose
term, but its use in structures may owe something to Hermann Grassmann
[72] 1844; Dedekind used it as a synonym for ‘System’.)

Tarski’s choice of example was not an accident. Leopold Löwenheim [123]
§4 (1915) had already studied the same example within the context of the
Pierce-Schröder calculus of relatives, and he had proved a very suggestive
result. In modern terms, Löwenheim had shown that there is a set of ‘basic’
formulas of the language L with the property that every formula φ of L can
be reduced to a boolean combination ψ of basic formulas which is equivalent
to φ in the sense that exactly the same assignments to variables satisfy it
in A. Thoralf Skolem [191] §4, 1919 and Heinrich Behmann [18] 1922 had
reworked Löwenheim’s argument so as to replace the calculus of relatives by
more modern logical languages. In 1927 C. H. Langford [114], [115] applied
the same ideas to dense or discrete linear orderings.

Tarski realised that not only the arguments of Löwenheim and Skolem,
but also the heuristics behind them, provided a general method for analysing
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structures. This method became known as the method of quantifier elim-
ination. In his Warsaw seminar, starting in 1927, Tarski and his students
applied it to a wide range of interesting structures. Important early exam-
ples were the field of real numbers (Tarski [201] 1931) and the set of natural
numbers with symbols for 0, 1 and addition (Presburger [160] 1930). In both
these cases the method yielded (a) a small and easily described set of basic
formulas, (b) a description of all the relations definable in the structure by
first-order formulas, (c) an axiomatisation of the set of all first-order sen-
tences true in the structure and (d) an algorithm for testing the truth of any
sentence in the structure. (Here (b) comes at once from (a). For (c), one
would write down any axioms needed to reduce all formulas to boolean com-
binations of basic formulas, and all axioms needed to determine the truth of
basic sentences. Then (d) follows since the procedure for reducing to basic
formulas is effective.)

One should note two characteristic features of the method of quantifier
elimination. First, the structure serves only to provide a stock of axioms.
True, nontrivial theorems about the structure may be useful for finding the
axioms. (For the field of real numbers, Tarski used Sturm’s theorem.) But
once the axioms are on the table, the rest of the work (and it can be heavy)
is entirely syntactic and unlikely to appeal to model theorists. Tarski was
aware of this. As late as 1978 he was defending the method of quantifier
elimination against modern methods

which often prove more efficient. . . . It seems to us that the
elimination of quantifiers, whenever it is applicable to a theory,
provides us with direct and clear insight into both the syntactical
structure and the semantical contents of that theory—indeed, a
more direct and clearer insight than the modern more powerful
methods to which we referred above.

(Doner, Mostowski and Tarski [43] p. 1f.)
Second, the method works on just one structure at a time. It involves no

comparison of structures. Let me dwell on this for a moment. In 1936 [203]
Tarski reworked and refined Langford’s results on discrete linear orderings.
Starting from an arbitrary discrete linear ordering A, he would follow the
method until he came to a choice of axiom that was true in some discrete
linear orderings and false in others. He found that he needed only the
following axioms or their negations:

There is a first element.
There is a last element.
There are at least n elements (n a positive integer).
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From this he could read off exactly what are the possible completions of
the theory of discrete linear orderings. In this way he got information not
about a single structure but about a class of structures. (In the Appendix to
[203], Tarski tells us that by 1930 he had defined the relation of elementary
equivalence, in modern symbols ≡: A ≡ B if the same first-order sentences
are true in A as in B.) Nevertheless the quantifier elimination itself involves
only one structure at a time, and any comparisons come later.

There are two common misconceptions about the method of quantifier
elimination. The first is that the basic formulas should be quantifier-free.
This was never the intention, though it happened in some cases. (The name
means that we reach the basic formulas by eliminating quantifiers, not that
all quantifiers are removed.) Later model theorists said that a theory has the
property of quantifier elimination if every formula is equivalent, in all models
of the theory, to a quantifier-free formula with the same free variables. One
must avoid confusing the property with the method.

The second misconception is that the main aim of the method was to
solve decision problems. This is about half true. It was Behmann’s paper
[18] in 1922 that introduced the term ‘Entscheidungsproblem’ (cf. Mancosu
[135]), long before Church and Turing in 1935–6 made the notion of an
effectively decidable set precise. Also Skolem in [191] presented his quantifier
elimination as a way of ‘evaluating’ (auswerten) formulas; and in [197] he
emphasised decidability (though he had other aims too). But Langford’s two
papers [114], [115] show no awareness of decidability; he is concerned only
with finding complete sets of axioms. Tarski’s reworkings of the quantifier
eliminations of Langford [203] and Skolem [204] are silent about decidability.
Tarski [201] in 1931 and his student Presburger [160] in 1930 mention in
passing that a decision procedure falls out of the quantifier elimination.
Not until 1940 does Tarski come out with the following (not very model-
theoretic) statement:

It is possible to defend the standpoint that in all cases in which
a theory is tested with respect to its completeness the essence
of the problem is not in the mere proof of completeness but in
giving a decision procedure (or in the demonstration that it is
impossible to give such a procedure).

([206] Note 11, published in 1967 from the 1940 page proofs).
By contrast it always was one of the main aims of quantifier elimina-

tion, in both Skolem and Tarski, to answer the question ‘What relations
are definable in a given structure A by means of formulas of a given for-
mal language?’. (In 1910 Hermann Weyl [222] had introduced the class of
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first-order definable relations over a relational structure, but without using
a formal language.) This remained a central question of model theory in all
periods.

For example, when the structure A is an algebraically closed field, we are
asking what are the constructible sets of affine geometries over A. It took
some time for model theorists to realise that this gave them an entry into
algebraic geometry. Abraham Robinson realised it after a fashion, and with
Peter Roquette he gave a model-theoretic proof of the finiteness theorem of
Siegel and Mahler [170]. This was published in 1975, shortly after Robinson’s
premature death. But the real breakthrough came with the discovery of
Morley rank in algebraically closed fields and the subsequent development
of geometric model theory. Already Boris Zilber’s 1977 paper [225] is largely
about first-order definable relations.

Likewise it was a long time before model theorists realised what a strong
tool they had in Tarski’s description of the first-order definable sets in the
field of real numbers. These sets are precisely the unions of finitely many
sets, each of which is either a singleton or an open interval with endpoints
either in the field or ±∞; in 1986 Anand Pillay and Charles Steinhorn [157]
introduced the name o-minimal for ordered structures in which these are
all the first-order definable sets. Lou van den Dries had pointed out in
1984 [45] that the o-minimality of the field of real numbers already gives
strong information about definable relations of higher arity—in particular
it allows one to recover a form of cell decomposition in the style known
to geometers. Julia Knight, Pillay and Steinhorn [109] generalised this cell
decomposition to all o-minimal structures. One of the outstanding results
in this area of model theory was Alex Wilkie’s proof in 1991 [223] that the
field of real numbers with the exponentiation function added is o-minimal
and has model-complete theory (i.e. the existential formulas form a basic
set). Wilkie’s method was quite different from Tarski’s; the problem may
be beyond the reach of methods as effective as Tarski’s. But Wilkie could
call on the advances in model theory made by Abraham Robinson and his
generation, and also a substantial body of work on real-algebraic geometry
by Khovanskii and others.

3 The metamathematics of first-order classes of
structures

Strictly speaking, if one compares the sentences true in two structures A and
B, one is no longer using the symbols of the structures as constants. This
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would have made it awkward to apply Tarski’s [202] truth definition directly
within model theory. But Tarski was aware that there was a problem here,
and in [205] §37 (1941 edition AND THE POLISH??) he proposed a way of
dealing with it. In a typical axiom system there are (again ignoring punc-
tuation) not two but three kinds of symbol. First come the logical symbols
for ‘and’, ‘or’ and so forth. Second there are variables. But thirdly there
are what Tarski calls ‘primitive terms’. These include the relation and func-
tion symbols of the axiom system, and in general they also include a term
standing for the domain over which quantifiers are to range. The primitive
terms have no meaning, so they are unsuitable to appear as constants in the
1933 truth definition. Therefore Tarski applies that definition to a sentence
φ and a structure A indirectly: he first forms an expression φ′ by replacing
the primitive terms in φ by variables, and then he says that A is a model
of φ if the assignment of the appropriate features of A to the corresponding
variables in φ′ satisfies φ′.

This is strangely roundabout. In a different way, so is Tarski’s procedure
of [208], where he replaces formulas by functions from structures to defin-
able sets. But it must have become clear by 1950 that the truth definition
should be rewritten to handle languages with three levels of symbol—logical,
variable, primitive. Tarski’s paper [210] already assumes such a truth def-
inition, and Tarski and Robert Vaught wrote out the details in 1957 [213].
(Mostowski [143] §3 1952 is an anticipation but in a different idiom.) As
urged by C. S. Peirce [154] in 1884, Tarski and Vaught took the quantifiers
to range over the domain implicitly, so that no primitive symbol for the
domain was needed. They referred to the remaining primitive symbols as
the non-logical constants.

So now people had a direct model-theoretic definition of ‘structure A is
a model of sentence φ’, and they could straightforwardly define the class
Mod(T ) of all structures which are models of a given set T of first-order
sentences. In this notation, Tarski’s definition ([204] p. 8, 1953) of the
relation ‘sentence φ is a logical consequence of theory T ’ becomes

Mod(T ) ⊆ Mod({φ})

i.e. ‘Every model of T is a model of φ’.
Changes of viewpoint usually generate new terminology. In 1950 there

was still no agreed name for a set of sentences of a formal language. For
example one finds them referred to as Axiomsysteme, sets of axioms, sets of
postulates, sets of laws, sets of propositions, and less often Theorien (e.g. in
Hilbert [86]). In 1935/6 Tarski’s ‘deductive theories’ were sets of expressions
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with a logic attached ([203]). During the mid 1950s the word theory came to
be accepted as the standard word for a set of sentences of a logical language.
(But not by Robinson, who continued to write of ‘sets of axioms’ or ‘sets of
sentences’ throughout his career.)

A number of earlier metamathematical results fell into place at once
within this general picture.

(a) In 1906 Gottlob Frege [64] attacked the idea of using a set of formal
axioms to define a class of structures. One thing that he found particu-
larly scandalous was that mathematicians should in good faith use the same
symbol to mean different things (in different structures) within one and the
same discourse:

In der Tat, wenn es sich darum handelte, sich und andere zu
täuschen, so gäbe es kein besseres Mittle dazu, als vieldeutige
Zeichen. (Indeed, if it were a matter of deceiving oneself and
others, there would be no better means than ambiguous signs.
[64] p. 307.)

But in the new truth definition the relation ‘symbol S names relation R
in structure A’ has an unambiguous and purely mathematical content, so
that even the most punctilious model theorist can use it with a pure heart.
(Frege had other objections too, and they need other answers.)

(b) In the years around 1900, Giuseppe Peano ([151] 1891), Hilbert ([85]
1899), Huntington ([97] 1902) and their colleagues considered a number of
questions of the form: Is axiom φ in the axiom set T deducible from the
other axioms in T? (Hilbert’s cited work includes the famous example of
Euclid’s parallel postulate.) To show the answer No, one proves that some
model of T \{φ} is not a model of φ, and one usually does this by describing
such a model explicitly. The truth definition allows us to give a purely
mathematical explanation of what is happening in arguments of this kind.

I add a word of caution here. In 1936 [204] Tarski proposed a definition of
‘logical consequence’ between sentences without non-logical constants. The
notion that he called ‘logical consequence’ in 1953 [212] was the natural
analogue for languages with three levels of symbol, but since it applies to a
different class of languages, it can hardly pick up the same relation. Math-
ematical logicians who use Tarski’s 1953 terminology are sometimes said by
philosophers to be endorsing ‘the model-theoretic theory of logical conse-
quence’. This seems to be a case of cross purposes; mathematical logicians
who use the phrase are simply referring to a useful set-theoretical notion,
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not taking sides in a contentious conceptual analysis.
The description ‘model-theoretic theory’ does certainly apply to Tarski’s

1936 [204] proposal, in the same broad sense that Tarski’s 1933 truth defini-
tion is model-theoretic. Tarski also used the word ‘model’ in the 1936 paper,
but (uncharacteristically) to stand for a reinterpretation of terms that al-
ready carry a meaning. His proposal was that a sentence φ should count as
logically true if and only if every model (in this odd sense) of φ is true. He
noted that to make this definition work, one would need to restrict the class
of terms that can be reinterpreted, so that in some appropriate sense the
reinterpreted sentence has the same ‘form’ as the original. (And for logical
consequence he proposed a similar definition.)

Part of Tarski’s 1936 proposal was several hundred years old; already
in the twelfth century Peter Abelard [1] p. 255 had noted that a ‘perfect’
syllogism remains valid when its terms are altered. Unknown to Tarski,
Bernard Bolzano [24] §§147f in 1837 had suggested using this idea as a
definition of analyticity: in Bolzano’s terminology a true proposition P is
logically analytic if and only if we get a true proposition whenever we vary
the non-logical ideas that appear in P . Tarski’s 1936 proposal adds one
further ingredient that is missing in Bolzano: in the reinterpretation, terms
should be allowed to stand for any objects of suitable type in the universe,
regardless of whether they already have names in the language. This was
a byproduct of the truth definition, but for Tarski it was one of the most
important features of his proposal.

(c) In his paper of 1915 on the calculus of relatives [123], Löwenheim
showed that every sentence of first-order logic, if it has a model, has a
model with at most countably many elements. His proof has several inter-
esting features, including his introduction of function symbols to reduce the
satisfiability of a sentence

∀x∃y φ(x, y)

to the satisfiability of the sentence

∀x φ(x, F (x)).

Thus it seems that Löwenheim invented Skolem functions, if we forgive him
his bizarre explanation of the passage from the first sentence to the second.
(He uses infinite, possibly uncountable, strings of existential quantifiers!)

Skolem tidied up Löwenheim’s argument and strengthened the result in
two alternative ways. In 1920 [192] he showed, using the axiom of choice
and a coherent account of Skolem functions, that if T is a countable first-
order theory (in fact he allows countable conjunctions and disjunctions too,
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and infinite quantifier strings) with a model A, then T has a model B with
at most countably elements; the proof shows that B can be taken as an
elementary substructure of A, but at this date Skolem lacked even the notion
of substructure. Two years later [193] he showed without the axiom of
choice that every countable first-order theory with a model has an at most
countable model. He used this result to construct a countable (and hence
nonstandard) model of Zermelo-Fraenkel set theory.

These results of Skolem seem to have attracted little attention before the
1950s. But from the new perspective of the 1950s they were central results
about classes of the form Mod(T ). In 1957 Tarski and Vaught [213] proved
the stronger result that if L is a first-order language with at most λ formulas,
and A is a structure for L of cardinality > λ, then A has an elementary
substructure of cardinality λ. This result was known as the Downward
Löwenheim-Skolem-Tarski Theorem (though it soon became usual to drop
Tarski’s name from the list in the interests of brevity).

(d) In his 1930 PhD thesis [68], Kurt Gödel reworked Skolem’s argument
from [193] and used it to show that if T is any syntactically consistent the-
ory in a countable first-order language, then relations and functions can be
defined on the natural numbers, corresponding to the relation and function
symbols of T , so that the defined relations and functions make the natu-
ral numbers N into a model of T (perhaps with an equivalence relation for
equality). Thus one could build a structure by ‘interpreting’ the language
of the structure in another given structure.

Mostowski [142] 1948, Tarski [212] 1953, Ershov [56] 1974 and others
developed this idea, usually under the name of interpretation. Since their
aim was to prove undecidability results, they thought in terms of the syn-
tactic interpretation of the theory T rather than in terms of building a new
structure. But when stability theorists found they needed a notion of one
structure being interpretable in another, Ershov’s notion was the one they
used. Shelah [185] (Chapter III §6) described how one might think of the
elements of structures interpretable in a structure M as imaginary elements
of M .

If the theory T in Gödel’s argument was itself arithmetically definable,
then one could place bounds on the arithmetical complexity of the inter-
preting relations and functions. So Gödel’s paper was a first step towards
effective model theory. Various people studied effective models at various
times and places—the text of Goncharov and Ershov [71] has nearly 400
references—but it never became a mainstream topic.
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(e) It was natural to look for upward versions of Skolem’s results. Tarski
claimed in 1934 (in a note added by the editors to the end of Skolem [195])
that in 1927/8 he had proved that every consistent first-order theory with no
finite model has a model with uncountably many elements. (Vaught [214] p.
160 reports the few facts that are known about this early proof by Tarski.)

Anatolii Mal’tsev [130] 1936 stated that every first-order theory with
an infinite model has models of ‘all cardinalities’ (presumably he meant all
high enough cardinalities). His proof rested on the Compactness Theorem,
on which see (f) below. Given the Compactness Theorem, it is easy to
prove that if L is a first-order language with at most λ formulas, and A is
a structure for L of cardinality < λ, then A has an elementary extension
of cardinality λ. This result became known as the Upward Löwenheim-
Skolem-Tarski Theorem—though again Tarski’s name was often dropped.
The irony was that it was Skolem [196], not Tarski, who refused to accept
that the theorem was true (though he allowed that it might be deducible
within some formal set theories).

(f) The Compactness Theorem for first-order logic states that if T is
a first-order theory such that every finite subset of T has a model, then
T has a model. Results equivalent to this appear in papers of Gödel (i)
for countable languages, [68] in 1930 and (ii) for propositional languages of
arbitrarily cardinality, [69] in 1932. In 1941 Mal’tsev [132] stated the full
theorem, referring to his paper [130] of 1936 for the proof. In fact [130]
doesn’t state the theorem, though it does contain a correct proof in two
parts. First Mal’tsev states and proves the Compactness Theorem for a
propositional language of arbitrary cardinality. Then he shows how this
theorem can be lifted to a theory S in an arbitrary first-order language,
by first passing to Skolem normal form and then introducing individual
constants as ‘witnesses’ (to use the modern jargon) in order to replace S
by a propositional theory—let us call it T—with the properties: (i) If every
finite subset of S is satisfiable then every finite subset of T is satisfiable, (ii)
if T is satisfiable then S is satisfiable. (i) is routine to check from Mal’tsev’s
construction, but he never states it explicitly in the paper; this is hardly a
ground for denying him the theorem.

The familiar proof of the Compactness Theorem by way of a complete-
ness proof for a proof calculus for first-order languages of arbitrary cardinal-
ity is a slight revision (due to Gisbert Hasenjaeger [78]) of the proof given
independently by Leon Henkin [81] in 1949, from his PhD thesis. The detour
through a proof calculus is very easily avoided by replacing ‘T is syntacti-
cally consistent’ throughout the argument by ‘All finite subsets of T have
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models’.
Any proof of the Compactness Theorem has to use some method for

building structures of arbitrarily high cardinality. Interpretation in N, as
in Gödel’s argument, is no longer an option. Both Mal’tsev and Henkin
take the elements of their models to be individual constants (or equivalence
classes of these constants, to give ‘=’ its standard meaning). Since there are
uncountably many of them, these constants can only be linguistic objects in
an abstract sense. In fact the central point seems to be that both Mal’tsev
and Henkin introduced a well-ordered sequence of objects and then used it
as a template to build the model around. Constructions of this kind were
popular in the 1970s, particularly in connection with Jensen’s prediction
principles (such as diamond) that allow one to ‘predict’ how the model will
sit around the template; see for example Shelah on the Whitehead problem
[184] 1974.

Frayne, Morel and Scott [63] 1962 discovered another proof of the Com-
pactness Theorem along completely different lines. They used ultraproducts
(on which see the next section), after Tarski had noticed that reduced prod-
ucts can be used to prove compactness for sets of Horn sentences.

The name ‘Compactness Theorem’ is from Tarski’s 1950 Congress ad-
dress, [208]. Until the late 1940s the Compactness Theorem went almost
unnoticed in the West. This shouldn’t be a surprise; at first sight the Com-
pactness Theorem has nothing useful to say about the kinds of question we
considered in section 2 above. But as soon as attention shifted to axiomati-
cally defined classes, it became clear that the Compactness Theorem was a
powerful tool for building structures within such a class.

The credit for this realisation goes to Mal’tsev and independently Abra-
ham Robinson. We have already noted that Mal’tsev [130] used compactness
to derive a form of upward Löwenheim-Skolem theorem. More startling, he
used compactness in two group-theoretic papers [131] 1940 (implicitly) and
[132] 1941 (explicitly) to prove local theorems in group theory. The result
of [131] is the now well-known theorem that if all the finitely generated sub-
groups of a group G have faithful linear representations of degree n over
fields, then so does G. These were the first examples of results interesting to
mathematicians in other fields, but proved by model theory. Unfortunately
the first notice of [132] in the West seems to have been in 1959 ([134]). But
meanwhile Robinson had independently proved the Compactness Theorem
in his PhD thesis [163] and had used it to deduce several mathematical
statements such as the following ([162] p. 7, which I state in more modern
terms): ‘Every purely transcendental extension K of the field R of rational
numbers has a field extension which is an elementary extension of R and
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adds no new element algebraic over the transcendence basis of K.’ Section
5 will examine how Robinson developed this line of work.

4 Expressive power

As soon as one has in place a serviceable definition of the relation ‘Structure
A is a model of first-order sentence φ’, certain things become almost routine.
One can define the class Mod(T ) of all models of a theory; dually one can
define the set Th(K) of all first-order sentences true throughout the class
K of structures. Together Mod and Th form a Galois connection. A class
of the form Mod(T ) is said to be an EC class or an elementary class if T
is finite, and an EC∆ class or an elementary class in the wider sense in the
general case. Thus Tarski [210] in 1954, except that he had ‘arithmetical’
for ‘elementary’.

An obvious question to ask is: (1) Given a first-order theory T , what
can one say in general about its class of models? For example, are there
interesting general constructions that will give models of T with interesting
properties? The dual question would be: Given a class of structures, what
can one say in general about the set of sentences true in all of them? But
this is a boring question (or at least it was until computer scientists found
themselves looking for efficient ways to determine, for a given structure A
and sentence φ, whether φ is true in A). So instead one asked: (2) Given
two structures A and B, how can one determine whether the same sentences
are true in both of them?

These are technical questions calling for technical answers. During the
1950s and early 1960s a stream of answers emerged. The text of Chang and
Keisler [33], published in 1973, is a compendium of the main achievements.

There were two other trends in the model theory of this period, neither of
them much connected with the questions (1) and (2), though they had a large
influence on the ways in which the technical breakthroughs were exploited.
The first trend was that people began to take a close interest in languages
which are stronger than first-order but more tractable than second-order,
for example infinitary languages and languages with cardinality quantifiers
(see section 9 below). So when someone had introduced a technique for first-
order languages, he or she could move on to testing the same technique on
stronger and stronger languages. Often a variant of the technique would still
work, but set theoretic assumptions and arguments would begin to appear.
An observation of William Hanf [76] helped to organise this area: he noted
that for any reasonable language L there is a least cardinal κ (which became
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known as the Hanf number of L) such that if a sentence of L has a model
of cardinality at least κ then it has arbitrarily large models. A great deal
of work and ingenuity went into finding the Hanf numbers of a range of
languages.

One effect of this trend was that the centre of gravity of research on
questions (1) and (2) moved steadily away from first-order languages and
towards infinitary languages during the period from 1950 to 1970, bringing
a heady dose of set theory into the subject. Allow me two anecdotes. In
about 1970 a Polish logician reported that a senior colleague of his had
advised him not to publish a textbook on first-order model theory, because
the subject was dead. And in 1966 David Park, who had just completed
a PhD in first-order model theory with Hartley Rogers at MIT, visited the
research group in Oxford and urged us to get out of first-order model theory
because it no longer had any interesting questions. (Shortly afterwards he
set up in computer science.)

The second trend was that this was the period in which model theorists
began to take maps between structures seriously (see section 5). The effects
of this trend were both subtler and more profound. Most of the rest of this
chapter will be devoted to them.

Here follow three of the answers to (1).

(1a) Ultraproducts. In 1955 Jerzy SLoś [121] described a construction
which combined a family of structures by means of an ultrafilter D on the
power set algebra of the index set. He stated that a first-order sentence φ is
true in the constructed structure if and only if the set of indices at which φ
is true lies in D. This became known as #Loś’s Theorem, and the construc-
tion itself gained the name of ultraproduct ; an ultraproduct of isomorphic
structures was called an ultrapower. (It came to light that ultraproducts or
their close relatives had been used earlier by Skolem [194] 1934, Hewitt [84]
1948 and Arrow [3] 1950. Skolem’s application was model-theoretic, to build
a structure elementarily equivalent to the natural numbers with + and · but
not isomorphic to them.)

We noted in the previous section that one can prove the Compactness
Theorem directly by ultraproducts. Ultrapowers also give a direct construc-
tion of arbitrarily large elementary extensions of an infinite structure. In
1961 Dana Scott [177] used a measurable cardinal to construct an inner
model of set theory that was an ultrapower of the universe. This ensured
that ultraproducts remained an essential tool of set theory long after most
model theorists had lost interest in them.

The further development of ultraproducts within model theory largely
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revolved around what one might call their injective-like properties: various
commutative diagrams could be completed by adding a mapping from some
given structure to an ultraproduct of other given structures. The simplest
example was Frayne’s Lemma ([63] 1962): If A is elementarily equivalent to
B then A is elementarily embeddable in some ultrapower C of B. Frayne’s
proof of this result constructed the embedding and the ultrapower C simul-
taneously.

Jerome Keisler reorganised arguments of this kind in a style that was
to prove important—Morley and Vaught [141] speak of Keisler’s ‘ “one ele-
ment at a time” property’. Keisler himself (footnote on Theorem 2.2 of his
doctoral dissertation, [104] 1961) compared his procedure with the element-
at-a-time methods used by Cantor [30] and Hausdorff [79] to build up iso-
morphisms between densely ordered sets. Frayne’s Lemma is a good example
to illustrate the point. Let the sequence (ai : i < κ) list all the elements
of A. The aim then is to construct, by induction on α ≤ κ, a sequence
(ci : i < α) of elements of the ultrapower C so that the map ai → ci is a par-
tial elementary map, i.e. any formula satisfied by the ai in A is also satisfied
by the corresponding ci in C. We can construct such a sequence provided
that we know that C has the following property: Given any set X of fewer
than κ elements of C and any complete 1-type over these elements (i.e. set
of formulas φ(x) with elements of X as parameters, which is maximal con-
sistent with the theory of C), there is an element of C realising this type.
Keisler said that if C had (essentially) this property, then it was κ-replete,
and he then showed how to construct κ-replete ultrapowers. Keisler’s def-
inition was slightly inconvenient—he counted the formulas rather than the
parameters—and a corrected version took the name κ-saturation. A struc-
ture of cardinality κ was called saturated if it was κ-saturated. (The name
is from Vaught [215] in the case κ = ω.)

Thus it turned out that ultraproducts were useful largely because of
their high saturation. Highly saturated elementary extensions are easy
to construct directly by realising types and taking unions of elementary
chains. Since saturation is a simpler concept than ultraproducts, ultraprod-
ucts largely dropped out of use within the model theory community once
the early enthusiasm had worn off. But there remain some important the-
orems for which ultraproducts give the only known reasonable proofs; one
is Keisler’s theorem [106] that uncountably categorical theories fail to have
the finite cover property. Many algebraists still value ultraproducts for their
transparency.

(1b) Omitting types. Ultraproducts give highly saturated models. One
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also wanted a way of building models that are very unsaturated. In 1959
Vaught [215] gave the classic omitting types theorem for countable models
of complete first-order theories. This theorem allows one to omit countably
many types at once; Vaught attributes this feature to Ehrenfeucht. The
paper also contains Vaught’s Conjecture as a question: ‘Can it be proved,
without the use of the continuum hypothesis, that there exists a complete
theory having exactly ℵ1 non-isomorphic denumerable models?’ (The Con-
jecture is that there is no such theory. It is still open in spite of some
impressive work by Rubin, Steel, Buechler, Newelski and others on special
cases.)

There were several close variants of omitting types. The Henkin-Orey
theorem [149] was one that appeared before Vaught’s paper, while Robin-
son’s finite forcing [14] and Grilliot’s theorem [74] on constructing families
of models with few types in common were two that came later. Martin
Ziegler [224] made finite forcing more palatable by recasting it in terms of
Banach-Mazur games; the same recasting works for all versions of omitting
types.

Finite forcing builds existentially closed models; these were introduced
into model theory by Michael Rabin [161] 1962 and Per Lindström [119]
1964. During the 1970s Belegradek, Ziegler, Shelah and others put a good
deal of energy went into constructing existentially closed groups, after Mac-
intyre [125] 1972 had shown that they have remarkable definability proper-
ties.

(1c) Indiscernibles. In 1956 Ehrenfeucht and Mostowski [50] showed,
using Ramsey’s Theorem, that if T is a complete first-order theory with
infinite models and (X,<) is a linearly ordered set, then T has a model A
whose domain includes X, and for each finite n, any two strictly increasing
n-tuples from X satisfy the same formulas in A. (In short, (X,<) is an
indiscernible sequence in A—though Ehrenfeucht and Mostowski said ‘ho-
mogeneous set’.) If A is the closure of X under Skolem functions (as we can
always arrange), A is said to be an Ehrenfeucht-Mostowski model of T .

Ehrenfeucht-Mostowski models have tightly controlled properties. For
example they realise few types (see their use in section 6 below). By choos-
ing (X,<) and (X ′, <′) sufficiently different, we can often ensure that the
Ehrenfeucht-Mostowski models constructed over these two ordered sets are
not isomorphic; this is the basic idea underlying most of Shelah’s construc-
tions of large families of nonisomorphic models (again see section 6). One can
also construct Ehrenfeucht-Mostowski models of infinitary theories, using
various theorems of the Erdős-Rado partition calculus in place of Ramsey’s

16



Theorem. As a byproduct we get a versatile way of building two-cardinal
models, i.e. models of first-order theories in which some definable parts have
one infinite cardinality and others have another infinite cardinality, as Mor-
ley showed in 1965 [140]. (Vaught had obtained two-cardinal results earlier
by other methods.)

In 1964 Frederick Rowbottom showed that if the set-theoretic universe
contains a measurable cardinal (or even an Erdős cardinal), then the con-
structible universe forms an Ehrenfeucht-Mostowski model on a class of or-
dinals which includes all uncountable cardinals. This result had enormous
repercussions in set theory, long before its late publication in [174].

(2) In his 1950 Congress address Tarski [208] showed how to give a pre-
cise mathematical definition of elementary equivalence, using essentially the
set-theoretic definition of satisfaction. This demonstrated that elementary
equivalence is a sound notion, but it gave no new information about the
notion. It was natural to ask if the same relation could be defined by a
completely different approach.

Any two elementarily equivalent saturated structures of the same car-
dinality are isomorphic. In 1961 Keisler [104] exploited this to show, with
the help of the generalised continuum hypothesis, that two structures are
elementarily equivalent if and only if they have isomorphic ultrapowers. Ten
years later Shelah [180] proved the same theorem without assuming the gen-
eralised continuum hypothesis. Simon Kochen in 1961 [110] gave another
characterisation of elementary equivalence, using direct limits of ultrapow-
ers.

In spite of their elegance, these characterisations of ≡ had few prac-
tical consequences. A much more serviceable answer came from another
source. Roland Fräıssé described a hierarchy of interrelated families of par-
tial isomorphisms between structures [62]. In terms of this hierarchy he gave
necessary and sufficient conditions for two relational structures to agree in
all prenex first-order sentences with at most n alternations of quantifier,
for each finite n. So A ≡ B if A and B agree in this sense for all finite
n. Fräıssé’s paper was unfortunately hard to read, and his ideas became
known through a paper of Ehrenfeucht ([49], 1961) who had come on them
independently. Soon afterwards they were rediscovered again by the Kazak
mathematician Tăımanov [200].

In Ehrenfeucht’s version, two players play a game to compare two struc-
tures A and B. The players alternate; in each step, the first player chooses
an element of one structure and the second player then chooses an element of
the other structure. The second player loses as soon as the elements chosen
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from one structure satisfy a quantifier-free formula not satisfied by the corre-
sponding elements from the other structure. This is the Ehrenfeucht-Fräıssé
back-and-forth game on the two structures. For a first-order language with
finitely many relation and individual constant symbols and no function sym-
bols, one could show that A and B agree in all sentences of quantifier rank
at most k if and only if the second player has a strategy that keeps her alive
for at least k steps. Hence A is elementarily equivalent to B if and only if
for each finite k, the second player can guarantee not to lose in the first k
steps.

With this equipment it’s very easy to show that if G,G′ are elementarily
equivalent groups and H,H ′ are elementarily equivalent groups, then the
product group G×H is elementarily equivalent to G′×H ′. This is perhaps
the best way to view the technique of Feferman and Vaught [58] 1962 for
computing the set of sentences true in an arbitrary product of structures.
A similar technique worked with ordered sums of structures.

The beauty of this idea of Fräıssé and Ehrenfeucht was that nothing
tied it to first-order logic. Ehrenfeucht himself [49] used it to prove the
equivalence of various ordinal numbers as ordered sets with predicates for
+ and ·, in a language with a second-order quantifier ranging over finite
sets. Carol Karp [103] adapted it to infinitary logics, and it reappeared in
Chang’s construction of Scott sentences [32]. Later (see section 9) it became
one of the central tools of computer science logic.

5 Maps between structures

During the period 1930–1950, mathematicians generally had begun to take
a closer interest in the maps between structures. This was the period that
saw the invention of category theory. The trend naturally made its way into
model theory.

For example Garrett Birkhoff [21] published his famous characterisa-
tion of the classes of models of sets of identities in 1935. Birkhoff’s paper
uses a number of straightforward model-theoretic facts about mappings, for
example that universally quantified equations are preserved under taking
homomorphic images; in 1951 Marczewski [136] extended this result to all
positive first-order sentences and asked for a converse. Tarski [210] reported
that his own work on formulas preserved in substructures (the SLoś-Tarski
Theorem) was done in 1949–50. This work of SLoś and Tarski, together with
Marczewski’s question, launched a flood of preservation theorems for all
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kinds of mapping. Keisler had a rich crop to survey already in 1965 [105].
But theorems of this kind continued to be proved up to the end of the 20th
century (e.g. [10] in 1999).

Definability theorems are a close relative of preservation theorems, and
they tend to have similar proofs. Instead of maps between structures, they
talk about reducts, where one or more symbols are stripped away from the
language (as with some forgetful functors). The first and most famous defin-
ability theorem of first-order model theory was Beth’s Theorem, [20] 1953,
which says that if in models of a theory T a certain symbol R is not definable
in terms of the other symbols, then one can find two models of T which are
identical in everything except the interpretation of the symbol R; in other
words, Padoa’s method always works.

An unkind comment—though it has some truth—is that in practice one
only ever uses the trivial direction of a preservation or definability theorem.
These theorems contribute more to the inner structure of model theory than
they do to applications. But during the 1950s the maps between structures
came to play a deeper role in model theory, not just as possible topics but as
essential tools of the subject. One can trace this development to two model
theorists, Abraham Robinson and Roland Fräıssé. I begin with Robinson.

Robinson’s 1950 Congress address [162] uses embeddings, homomor-
phisms, elementary embeddings and unions of chains. Elementary embed-
dings were a new idea. Robinson had no name for them and not much of a
general theory. In fact it was Robinson’s style, then and later, to use maps
without even having a symbol for them. To find an embedding of A in B,
he would prove that B is a model of the diagram of A; in Robinson’s sense
a diagram was a set of sentences describing a structure, not a display of ar-
rows. It was only in 1957 that Tarski and Vaught [213] defined elementary
embeddings and made them generally available.

Robinson had a particular genius for finding model-theoretic statements—
usually about mappings—that are equivalent to significant facts in this or
that branch of algebra or field theory. To measure his style one should com-
pare his treatment of algebraically closed fields with that of Tarski [207].
Tarski had applied the method of quantifier elimination to the theory T of
algebraically closed fields and established that the quantifier-free formulas
form a basic set, and that T has countably many completions, namely one
for each characteristic.

Robinson made the following observations: (1) If A and B are alge-
braically closed fields of the same characteristic, then by downward Löwen-
heim-Skolem and compactness one can find fields A′, B′ elementarily equiv-
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alent to A, B respectively, and both of transcendence degree ω. By Steinitz’
Theorem A′ and B′ are isomorphic, and hence A and B are elementarily
equivalent. This gives Tarski’s conclusion on completions of T ([162]). (2)
We say that a theory S is model-complete if every embedding between mod-
els of S is elementary. A sufficient condition for model-completeness is that
every embedding between models of S preserves universal formulas ([166]).
It then follows at once from the Hilbert Nullstellensatz that the theory T
of algebraically closed fields is model-complete ([165]). (3) Suppose that
whenever A and B are models of a theory S and X is a nonempty substruc-
ture of both A and B, the formulas satisfied by elements of X in A are the
same as those satisfied by the same elements in B; then S has the property
of quantifier elimination (i.e. the quantifier-free formulas are a basic set).
In the case of our theory T , standard facts about amalgamation of fields
allow us to embed both A and B in an algebraically closed field C, forming
a commutative diagram over X. By model-completeness the embeddings
of A and B in C are elementary, so the criterion for quantifier elimination
holds ([168] §4.3). Thus Robinson reached all Tarski’s conclusions about al-
gebraically closed fields by general model-theoretic principles and standard
algebraic facts about fields. This is typical of Robinson’s reorganisation of
the subject.

Robinson certainly didn’t confine himself to finding new proofs of known
theorems (though he was never inhibited about doing precisely this). Among
his many contributions were some new examples of model-complete theories.
One of these was the theory of differentially closed fields of characteristic
0 [165] p. 134 in 1956, as if to predict how useful this theory would be for
Hrushovski’s proof of the geometric Mordell-Lang Conjecture some thirty-
five years later (section 9 below).

Better known than all of these was nonstandard analysis, which appeared
almost without warning in 1961 [167]. Robinson used compactness to form
an elementary extension �

R of the field R of real numbers (with any further
structure attached) containing infinitesimal elements. He noted that if a
theorem of real analysis can be written as a first-order sentence φ, then to
prove φ it suffices to use the infinitesimals to show that φ is true in �

R (a
typical example of what Robinson called a transfer argument).

We turn to Fräıssé. In 1953 he published a short paper [60], with a fuller
account a year later [61]. He limited himself to structures with just one
relation symbol and no other nonlogical constants (though his arguments
are valid for structures with finitely many relation symbols and individual
constants). Taking the ordered set of rational numbers as a paradigm, he
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made two important observations. (a) We can characterise those classes
of finite structures which are of the form: all finite structures embeddable
in a given countable structure A. (Following Fräıssé I shall call these γ-
classes—it is not a standard name.) (b) A γ-class has the amalgamation
property if and only if A can be chosen to be homogeneous, and in this
case A is determined up to isomorphism by the γ-class. (A class K has the
amalgamation property if for all embeddings e1 : A → B1 and e2 : A → B2

within K there are embeddings f1 : B1 → C and f2 : B2 → C, also within
K, such that f0e0 = f1e1. A is homogeneous if every isomorphism between
finite substructures of A extends to an automorphism of A.)

Thus Fräıssé introduced the amalgamation property to model theory
(though the name came later, from Jónsson).

Fräıssé’s (a) introduced into model theory a kind of Galois theory of
structures: it invited one to think of a structure as built up by a pattern of
amalgamated extensions of smaller structures. This idea became important
in stability theory.

Fräıssé’s (b) provided a way of building countable structures by assem-
bling a suitable γ-class of finite structures. His version of the idea was mod-
est, but it was widely used as a source of ω-categorical structures. It was
also enough to provide a framework for constructions by Ehud Hrushovski
which solved key problems posed by Zilber ([92], [92]).

In 1956/7 Bjarni Jónsson, who had reviewed Fräıssé’s [60], wrote two
papers [101], [102] removing the limitation to finite and countable struc-
tures in Fräıssé’s construction of homogeneous structures. The cost he had
to pay was that the generalised continuum hypothesis was needed at some
cardinals. Michael Morley realised almost at once (and later published with
Vaught who had come to similar conclusions independently, [141] 1962) that,
thanks to the Compactness Theorem, Jónsson’s assumptions on the γ-class
are verified if one considers the class of all ‘small’ subsets of models of a com-
plete theory T and replaces embeddings by partial elementary maps. (In fact
Morley and Vaught used a trick from Skolem [192], adding relation symbols
so that partial elementary maps become embeddings.) It also emerged that
the resulting homogeneous structures were exactly the saturated models of
T .

In the 1970s there was some debate about how best to handle the Morley-
Vaught γ-class. Gerald Sacks [176] proposed one should think of it as a cat-
egory with partial elementary maps as morphisms. Shelah [185] (Chapter I
§1) went straight to a very large saturated model C (but we never ask exactly
how large); in his picture the γ-class is simply the class of all small subsets
of the domain of C, and the partial elementary maps are the restrictions of
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automorphisms of C. Shelah’s view prevailed. The structure C was known
as the big model or (following John Baldwin) the monster model. When
geometric model theory came on the scene, people noted that by going with
Shelah the model-theoretic community had opted for the analogue of André
Weil’s ‘universal domain’ [221] Chapter IX §1, rather than the more recent
category-theoretic language of Grothendieck.

The Morley-Vaught theory tells us that under suitable set-theoretic as-
sumptions, every structure has a saturated elementary extension. These
set-theoretic assumptions were always a stumbling block, and so weak forms
of saturation were devised that served the same purposes without special
assumptions. For example every structure has an elementary extension that
is special [34]. Every countable structure has a recursively saturated ele-
mentary extension [15].

In 1964 Jan Mycielski [146] noticed that Kaplansky’s notion of an alge-
braically compact abelian group (today more often called a pure-injective
abelian group) has a purely model-theoretic characterisation that is a close
analogue of saturation. With colleagues in WrocSlaw, Mycielski developed
this observation into a theory of atomic compact structures, which was useful
on the borderline between model theory and universal algebra.

Since atomic compact structures have a large amount of symmetry, they
tend to have neat algebraic structural descriptions too; in fact this was the
reason for Kaplansky’s interest in them. To some extent the same holds for
saturated structures, and even for κ-saturated structures when κ is large
enough. For example in 1970 Paul Eklof and Edward Fisher [53] noted that
every ω1-saturated abelian group is algebraically compact, and so one can
read off the results of Wanda Szmielew’s quantifier elimination for abelian
groups [199] rather easily from Kaplansky’s structure theory. Likewise Er-
shov [54] used ω1-saturated boolean algebras to recover Tarski’s quantifier
elimination results for boolean algebras. Clean methods of this kind quickly
became standard practice.

Fräıssé’s contribution was ignored in many accounts of the history. After
some careful acknowledgments by Morley and Vaught [141], [61] disappears
clean from the record, remembered only by a few people working on ω-
categoricity. Maybe Fräıssé had less of a flair for publicity than Robinson.
Another factor may have been that many people at the time regarded the
whole line of work from Fräıssé to Morley and Vaught as trivial. Thus
Saunders Mac Lane [128] reports that when Morley first brought him the
material that led to [141],

. . . I said, in effect: “Mike, applications of the compactness the-
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orem are a dime a dozen. Go do something better.”

Mac Lane adds that Morley’s Theorem (see section 6 below) was the fruit
of this advice.

Another factor that may have obscured the role of Fräıssé and of Jónsson
was that model theorists formed the habit of hiding amalgamations. In 1956
Robinson [164] proved a fundamental amalgamation theorem of first-order
logic. But he never stated it; you have to extract it from Robinson’s proof of
a less interesting theorem (the Joint Consistency Theorem). When stability
theory returned to Fräıssé’s view of a structure as built up from amalga-
mations of extensions of smaller structures, the convention was always to
reduce to amalgamations of the form ‘Amalgamate Y ⊃ X and X ∪{b} over
X’, in line with Keisler’s ‘one element at a time’ approach. Amalgamations
of this kind were called extending the type of b over X to Y . In 1983 Shelah
[186] restored the amalgamation viewpoint with a vengeance: to construct
structures of cardinality ωn from countable pieces, he formed n-dimensional
amalgams. But this work of Shelah had little influence in first-order model
theory.

In any event, some of the best tools of 1960s model theory were a blend
of the Robinson line and the Fräıssé line. For example Robinson’s crite-
rion for a theory T to have quantifier elimination was rewritten as: ‘Given
models B and C of T with a common nonempty substructure A, and an
enough-saturated elementary extension D of B, there exists an elementary
embedding of C into D making the diagram commute.’ To taste, one could
require D to be an ultrapower of A.

James Ax and Simon Kochen put the new machinery to work in 1965/6
[5], [6], [7] by finding a complete set of axioms for the field of p-adic numbers
(uniformly for any prime p) and then showing that this theory has elimina-
tion of quantifiers. Their method was completely different from the method
of quantifier elimination, and it seems likely that any proof by that method
would have been hopelessly unwieldy. Instead they considered saturated
valued fields of cardinality ω1. One can say a good deal in algebraic terms
about the structure of such fields; Ax and Kochen were able to show that un-
der certain conditions, any two such fields are isomorphic. They then wrote
down these conditions as a first-order theory T . Assuming the generalised
continuum hypothesis, any two countable models A,B of T have saturated
elementary extensions of cardinality ω1, which are isomorphic, so that A and
B must be elementarily equivalent. This proves the completeness of T (and
hence its decidability since the axioms are effectively enumerable); a sim-
ilar argument using saturated structures shows that T is model-complete,
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and one more push shows that Robinson’s criterion for quantifier elimina-
tion is satisfied. There are various tricks that one can use to eliminate the
generalised continuum hypothesis.

This work of Ax and Kochen, together with very similar but independent
work of Yuri Ershov, [55], marked the beginning of a long line of research in
the model theory of valued fields. But it hit the headlines because it gave a
proof of an ‘almost everywhere’ version of a conjecture of Emil Artin on C2

fields. Since counterexamples to the full conjecture appeared at about the
same time, ‘almost everywhere’ was about as much as one could hope for,
short of an explicit list of the exceptions.

Around 1970 category theory was developing fast. Now that model the-
ory took maps between structures seriously, it was reasonable to try to
develop a categorical model theory where the maps were the main levers.
Michael Makkai and colleagues did some groundwork (e.g. [129]), but the
subject never really took off. Perhaps model theorists enjoy handling el-
ements and dislike morphisms between theories. Nevertheless two papers
did show that useful ideas might come from category theory. One was by
Daniel Lascar [116] 1982, who had visited Makkai and discussed with him
the category of elementary embeddings between models of a complete the-
ory; Lascar’s enquiries threw up several useful ideas, including a notion of
Lascar strong type that came to play a role in the study of simple theories.
And Edmund Robinson [171] 1986 put categorical logic to good use in a
model-theoretic study of the p-adic spectra of commutative rings.

6 Categoricity and classification theory

E. V. Huntington [97] called attention to the fact that some theories have
only a single model up to isomorphism; he called such theories ‘sufficient’.
The second-order Peano axioms for number theory (Dedekind [39]) are a
familiar example (though not Huntington’s). Oswald Veblen ([219] 1904)
proposed the name categorical for theories with this property. As Veblen
noted, a categorical theory is necessarily complete in the sense that it entails,
for every sentence φ of the appropriate language, either φ or ¬φ. (Bolzano
knew a version of this in 1837: [24] §110.)

No first-order theory with infinite models can be categorical, by the
Upward Löwenheim-Skolem Theorem. But often in algebra we make do
with less: for example if A and B are vector spaces over the same field
k (and we can express this with first-order sentences true in A and B),
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then A and B are isomorphic whenever they have the same dimension. In
particular if A and B have the same cardinality and it is greater than that
of k, then they have the same dimension and so are isomorphic. So it is
natural to say (as did Vaught in 1954 [214]) that a theory T is λ-categorical
if it has, up to isomorphism, exactly one model of cardinality λ. Then—as
Vaught noted, and we saw in section 5 that Robinson [168] had already used
a version of the argument—a first-order theory which has no finite models
and is λ-categorical for some λ must be complete.

In 1959 Lars Svenonius [198] showed that among countable structures,
the models of ω-categorical theories are precisely those structures whose
automorphism group has finitely many orbits of n-element sets, for each
finite n. Permutation groups with this property are said to be oligomor-
phic. Svenonius’ characterisation crossed the boundary between two differ-
ent branches of mathematics, with consequences that we come back to in
section 8. Other model theorists (notably CzesSlaw Ryll-Nardzewski [175])
gave purely model-theoretic equivalents of ω-categoricity.

In 1955 SLoś [121] asked: If T is a complete theory in a countable first-
order language, and T is λ-categorical for some uncountable λ, then is T
λ-categorical for every uncountable λ? With hindsight we can see that this
was an extraordinarily fortunate question to have asked in 1955, for two
main reasons. The first was that at just this date the tools for starting to
answer the question were becoming available. If T is λ-categorical and A,
B are models of T of cardinality λ which are respectively highly saturated
and Ehrenfeucht-Mostowski, then A and B are isomorphic and we deduce
that models of T of cardinality λ have very few types to realise. This is
strong information. Thus SLoś’s question ‘stimulated quite a bit of the work
concerning models of arbitrary complete theories’ (Vaught [216]).

Second, SLoś’s question was unusual in that it called for a description of
all the uncountable models of a theory. The answer would involve finding a
structure theorem to explain how any model of the theory is put together.
This pointed in a very different direction from Tarski’s [210] ‘mutual rela-
tions between sentences of formalized theories and mathematical systems in
which these sentences hold’. One mark of the change of focus was that ex-
pressions like uncountably categorical (i.e. λ-categorical for all uncountable
λ) and totally categorical (i.e. λ-categorical for all infinite λ), which origi-
nally applied to theories, came to be used chiefly for models of those theories.
For example Walter Baur wrote in 1975 [16] of ‘ℵ0-categorical modules’.

In 1965 Michael Morley answered SLoś’s question in the affirmative [139];
this is Morley’s Theorem. Amid all the literature of model theory, Morley’s
paper stands out for its clarity, its elegance and its richness in original ideas.
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Morley’s central innovation was Morley rank, which assigns an ordinal rank
to each definable relation in any model of a theory T λ-categorical for some
uncountable λ. (In Morley’s presentation the rank was assigned to com-
plete types, but later workers generally used the induced rank on formulas
or definable relations.) In an algebraically closed field the Morley rank of
an algebraic set is equal to its Krull dimension; Morley certainly had some
such correlation in mind, as he signalled by giving the name totally tran-
scendental to theories that assign a Morley rank to all definable relations in
their models. Morley conjectured that the Morley rank of any uncountably
categorical structure (i.e. the Morley rank of the formula x = x) is always
finite; this was proved soon afterwards by Baldwin [8], and independently
by Zilber.

Baldwin and Lachlan [9] in 1970 reworked and strengthened Morley’s
results. Building on the unpublished dissertation of William Marsh [137],
they showed that each model of an uncountably categorical theory carries
a definable strongly minimal set with an abstract dependence relation that
defines a dimension for the model. Once the strongly minimal set is given,
the rest of the model is assembled around it in a way that is unique up to
isomorphism. They also showed that the number of countable models of
such a theory, up to isomorphism, is either 1 or ω.

A few young researchers set to work to extend Morley’s result to un-
countable first-order languages. One of them was Frederick Rowbottom,
who in 1964 [173] introduced the name ‘λ-stable’ for theories with few types
over sets of λ elements; hence the name stability theory for this general area.

In 1969 [178] Saharon Shelah began to publish in stability theory. With
his formidable theorem-proving skill he reshaped the subject almost from
the start (and many other model theorists fled from the field rather than
compete with him). By 1971 he had proved the uncountable analogue of
Morley’s Theorem [180]. But more important, he had formulated a plan of
action.

Ehrenfeucht [49] had already noticed that a theory which defines an
infinite linear ordering on n-tuples of elements must have a large number
of non-isomorphic models of the same cardinality. Shelah saw this result as
marking a division between ‘good’ theories that have few models of the same
cardinality, and ‘bad’ theories that have many. Shelah’s strategy was to hunt
for possible bad features that a theory might have (like defining an infinite
linear ordering), until the list was so comprehensive that a theory without
any of these features is pinned down to the point where we can list all of its
models in a structure theorem. As Shelah once explained it in conversation,
the outcome should be to show that whenever K is the class of all models
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of a complete first-order theory, ‘if K is good, it is very very good, but if K
is bad it is horrid’. Shelah coined the word nonstructure for the horrid case,
and he suggested several definitions of nonstructure [187]. In one definition,
a nonstructure theorem finds a family of 2λ models of cardinality λ, none
of which is elementarily embeddable in any other. In another definition, a
nonstructure theorem finds two nonisomorphic models of cardinality λ that
are indistinguishable by strong infinitary languages.

Pursuing this planned dichotomy, Shelah wrote some dozens of papers
and one large and famously difficult book ([181] 1978; the second edition
in 1990 reports the successful completion of the programme for countable
first-order theories in 1982). Shelah also wrote a number of papers on anal-
ogous dichotomies for infinitary theories or abstract classes of structures
(e.g. [185]). His own name for this area of research was classification theory.
The name applies at two levels: first-order theories classify structures, and
Shelah’s theory classifies first-order theories.

Shelah himself often said that his main interests lay on the nonstructure
side ([188] p. 154):

I was attracted to mathematics by its generality, its ability to
give information where apparently total chaos prevails, rather
than by its ability to give much concrete and exact information
where we a priori know a great deal.

But even though he downplayed it himself, in his work on the structure side
of the dichotomy he vastly expanded the range of the new tools introduced
by Morley. Thus Shelah’s superstable, stable and simple were successive
weakenings of Morley’s ‘totally transcendental’, and his forking was a pow-
erful abstract notion of dependence for stable theories. (Shelah didn’t say
much about simple theories. But when some examples became important in
work of Hrushovski in the early 1990s, Byung-Han Kim [107] showed that
forking behaves well in them too.) Shelah’s regular types are a generali-
sation of strongly minimal sets, in the sense that they carry an abstract
dependence relation that gives them a dimension. In a superstable struc-
ture, the relations between the regular types determine for example whether
we can expand one part of the structure while keeping another part fixed.

Shelah also showed that for models of a stable theory, any complete
type is in a certain sense ‘definable’ by first-order formulas ([181] 1971,
independently proved by Lachlan [111] 1972). He showed that the definition
can always be taken over a canonical base which is a family of imaginary
elements of the model (in the sense mentioned in (d) of section 3 above). A
special case of his construction is André Weil’s ([221] p. 68) field of definition
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of a variety, except that the field of definition consists of ordinary elements,
not imaginary ones. Bruno Poizat explained this in 1985 ([159] §16e) by
showing that algebraically closed fields have elimination of imaginaries, in
the sense that their genuine elements can stand in for their imaginary ones.

A byproduct of the work of Morley and Shelah was a series of papers
determining what structures in various natural classes were categorical, to-
tally transcendental and so forth. The first nontrivial paper of this kind was
by Joseph Rosenstein, [172] 1969. But certainly the most influential was a
paper of Angus Macintyre in 1972 [124], where he showed that an infinite
field is totally transcendental if and only if it is algebraically closed. In the
aftermath of Macintyre’s paper, Zilber proved (1977 [225]) that any totally
transcendental skew field is an algebraically closed field, and Cherlin and
Shelah showed (1979 [37]) that the same is true for superstable skew fields.
In the course of this and related work, both Zilber and Cherlin independently
noticed that a group definable in an uncountably categorical structure has
many of the typical features of an algebraic group. Cherlin [35] in 1979
conjectured that every simple group of finite Morley rank is up to isomor-
phism an algebraic group over an algebraically closed field. This became
known as Cherlin’s Conjecture; Zilber [225] had conjectured the same thing
for the special case of simple groups interpretable in uncountably categorical
structures.

Stable groups turned out to have an unexpectedly large amount of struc-
ture, much of which carried over to modules (which are always stable).
Various authors (among them Macintyre, Garavaglia, Baldwin, Saxl, Bele-
gradek) noticed chain conditions that hold in some or all stable groups. In
1985 Poizat [159] created a rich theory of stable groups by generalising ideas
from [225] and [37]. Poizat’s framework allows one to rely on intuitions from
algebraic geometry in handling stable groups; for example their behaviour
is strongly influenced by their generic elements. At the same time Alexandr
Borovik [27] started to bring recent group theory to bear on Cherlin’s Con-
jecture. Stable groups attracted other workers and remained a lively topic
to the end of the century, though Cherlin’s Conjecture is still open.

7 Geometric model theory

Geometric model theory classifies structures in terms of their combinatorial
geometries and the groups and fields that are interpretable in the structures.
The roots of this theory go back to work of Lachlan, Cherlin and above all
Zilber in stability theory in the 1970s, and for this reason the theory is also
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known as geometric stability theory (the title of Pillay’s text [156]). But by
the early 1990s it emerged that the same ideas sometimes worked well in
structures that were by no means stable.

An abstract dependence relation gives rise to a combinatorial geometry—
in what follows I say just ‘geometry’. In this geometry certain sets of points
are closed, i.e. they contain all points dependent on them. Zilber [227] clas-
sified geometries into three classes: (a) trivial or degenerate, where all sets of
points are closed; (b) nontrivial locally modular, which are not trivial but if
a finite number of points are fixed (i.e. made dependent on the empty set),
then the resulting lattice is modular—for brevity this case is often called
modular ; (c) the remainder, known briefly as non-modular. Classical exam-
ples are: for (a), the dependence relation where an element is dependent
only on sets containing it; for (b), linear dependence in a vector space; for
(c), algebraic dependence in an algebraically closed field.

This classification made its way into model theory rather indirectly. Zil-
ber was working on a proof that no complete totally categorical theory is
finitely axiomatisable. (His first announcement of his proof of this result in
1980 [226] was flawed by a writing-up error which is repaired in [231].) In
work on ω-categorical stable theories Lachlan [112] had introduced a com-
binatorial structure which he called a pseudoplane. A key step in Zilber’s
argument was to show that no totally categorical structure contains a defin-
able pseudoplane. From this he deduced that the geometry of the strongly
minimal set must be either trivial or modular, and his main result followed
in turn from this. Cherlin, on reading [226] and seeing the error, went to
the classification of finite simple groups and proved directly [36] that the
strongly minimal set must be either trivial or modular. This result has a
purely group-theoretic formulation. In fact several people discovered it in-
dependently, and it became known as the Cherlin-Mills-Zilber theorem in
honour of three of them. Zilber’s proof, once repaired, reaches the result
without the classification of finite simple groups.

In the light of Zilber’s work on uncountable categoricity and its exten-
sion by Cherlin, Harrington and Lachlan [36], model theorists looked to see
what other structures might have modular geometries. One particularly
influential result was proved independently by Hrushovski and Pillay, and
published jointly [95]: a group G is modular (i.e. has only modular or trivial
geometries) if and only if all definable subsets of Gn are boolean combina-
tions of cosets of subgroups.

We saw that Zilber first applied his trichotomy of geometries by show-
ing that in the structures he was considering, the non-modular case never
occurred. Zilber now proposed to apply the same trichotomy to another
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question, namely his question (mentioned in the previous section) whether
every simple group interpretable in an uncountably categorical structure
must be an algebraic group over an algebraically closed field. Algebraically
closed fields themselves have non-modular geometry; at the 1984 Interna-
tional Congress Zilber [229] conjectured the converse, viz. that any uncount-
ably categorical structure with non-modular geometry must be—up to in-
terpretability both ways—an algebraically closed field. This was known as
Zilber’s Conjecture.

A word about Zilber’s motivation may be in order. Macintyre said in
1988 [127] that ‘Purely logical classification[s] give only the most superfi-
cial general information’ (and attributed the point to Kreisel). Zilber was
convinced that the opposite must be true: if classical mathematics rightly
recognises certain structures as ‘good’, then it should be possible to say in
purely model-theoretic terms what makes these structures good. In fact
Zilber in conversation quoted Macintyre’s paper [124] as an example of how
a purely model-theoretic condition (total transcendence) can be a criterion
for an algebraic property (algebraic closure). Zilber was also convinced that
being a model of an uncountably categorical countable first-order theory is
an extremely strong property with rich mathematical consequences, among
them strong homogeneity and the existence of a definable dimension.

In 1988 Hrushovski refuted Zilber’s Conjecture [92]. But for both Hrushovski
and Zilber this meant only that the right condition hadn’t yet been found.
Since it seemed to be particularly hard to recover the Zariski topology from
purely model-theoretic data, a possible next step was to axiomatise the
Zariski topology. This is not straightforward: it has to be done in all fi-
nite dimensions simultaneously, since the closed sets in dimension n don’t
determine those in dimension n+ 1. But Hrushovski described a set of ax-
ioms, and Zilber and Hrushovski found that by putting together what they
knew, they could prove [96] that Zilber’s Conjecture holds for models of the
axioms. In particular, if the geometries are non-modular then the model is
isomorphic to the topology of a smooth curve over an algebraically closed
field, and the field is interpretable in the topology.

In 1996 Hrushovski [90] published a proof of the geometric Mordell-Lang
Conjecture in all characteristics. Key ingredients of his argument were the
results on the Zariski topology and on weakly normal groups, and earlier
results on the stability of separably closed and differentiably closed fields.
Hrushovski went on to apply a similar treatment to the Manin-Mumford
Conjecture. This case was a little different: the structures in question were
unstable. But Hrushovski showed that they inherited enough stability from
a surrounding algebraically closed field; and in any case they were ‘simple’
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in Shelah’s classification. About the same time, Yakob Peterzil and Sergei
Starchenko [155] found that Zilber’s geometric trichotomy gave a strong
classification of o-minimal fields. These fields are a very long way from
being stable.

By the mid 1990s workers in geometric model theory had built up a large
body of expertise. One theme that is worth exploring in this is the role of
groups interpretable in a structure.

When Baldwin and Lachlan [9] in 1971 had shown that every uncount-
ably categorical structure consists of a strongly minimal set D and other el-
ements attached around it, they found they needed to say something about
the way these other elements are attached. Because of categoricity, some-
thing in the theory has to prevent the set of attached elements being larger
than D. The simplest guess would be that each attached element has to sat-
isfy an algebraic formula (i.e. one satisfied by only finitely many elements)
with parameters in D. Baldwin and Lachlan finished their paper with a com-
plicated example to show that this need not hold. Later Baldwin realised
that an easy example was already to hand: a direct sum G of countably
many cyclic groups of order p2 for a prime p. The socle (the set of elements
of order at most p) is strongly minimal, in fact a vector space over the p-
element field. An element a of order p2 is described by saying what pa is;
but if b is any element of the socle then some automorphism of G fixes the
socle pointwise and takes a to a+ b. In fact the orbit of a over the socle is
parametrised by elements of the socle. This parametrisation keeps the orbit
from having cardinality greater than that of the socle.

Zilber [231] realised that this was a common pattern in uncountably
categorical structures. Each such structure is a finite tower; at the bottom
is a strongly minimal set, and as we go up the tower, the orbit of an element
over the preceding level in the tower is always parametrised by some group
interpretable in that preceding level. He called these groups binding groups.
There are some cohomological constraints, which allowed Ahlbrandt and
Ziegler [2] to begin cataloguing the possibilities.

Later Zilber ([228] Lemma 3.3) called attention to the combinatorial
configuration
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which occurs in modular strongly minimal sets. (The blobs are points of the
geometry. All points are pairwise independent. A line between three points
means they form a dependent set.) He showed how to construct a group
from the configuration; but since this was in the middle of an argument by
reductio ad absurdum and quite strong assumptions were in force, it was
less than the definitive result. Hrushovski [89] looked closer and showed,
using Zilber’s configuration, that every modular regular type has an infinite
group interpretable in it (in a generalised sense).

Soon after this, Hrushovski [94] and Laskowski [118] used this result of
Hrushovski to show that the power of groups to bind structures together
could be used to settle unsolved problems of stability theory. This made it
clear that henceforth the interpretability of groups in a structure would have
to be considered one of the tools of model theory. A number of researchers
went to work to discover and characterise the groups interpretable in various
structures of model-theoretic interest.

8 Model theory within mathematics

Model-theoretic writers before 1950 rarely said what they thought about
the relation between their work and the rest of mathematics. The natural
assumption was that they were exploring properties of notions in the foun-
dations of mathematics: axiom, independence, consistency, model, truth.
Tarski ([211] p. 152) saw his 1933 truth definition as a contribution to one
of ‘the classical problems of philosophy’.

Listening to the contributions of Robinson and Tarski to the 1950 Inter-
national Congress, we begin to hear a new tune. Both speakers set out to
convince their audience that

contemporary symbolic logic can produce useful tools—though
by no means omnipotent ones—for the development of actual
mathematics, more particularly for the development of algebra
and, it would appear, algebraic geometry (Robinson [162] p. 694)

and that model theory has applications

which may be of general interest to mathematicians and espe-
cially to algebraists; in some of these applications the notions of
[model theory] itself are not involved at all’ (Tarski [208] p. 717).

Over the next few decades, claims of this kind became commonplace, espe-
cially in applications for research grants.

32



There were some high points in the search for applications ‘in which the
notions of model theory itself are not involved’. Nonstandard analysis was
one. Another was the work of Ax, Kochen and Ershov on Artin’s Conjecture
on C2 fields (see section 5 above). In 1984 Jan Denef [41] used Macintyre’s
quantifier elimination for p-adic fields in order to prove a special case of
a conjecture of Serre on Poincaré series; then with van den Dries, Denef
proved the full conjecture [42] in 1988. Murthy and Swan in 1976 [145]
gave an application of a criterion of Eklof [51] 1975 for a fact of geometry
to be independent of the choice of universal domain. Shelah [182] applied
stability theory to show that in characteristic 0 each differential field has a
unique prime differential closure. And although it took some time to filter
out of Russia, Mal’tsev’s early work on local theorems in group theory was a
significant example. In all these cases a device from model theory—usually
involving compactness—was used to prove a result definitely belonging to
some other area of mathematics.

There was a revealing episode in the late 1960s. James Ax [4] gave a brief
and neat model-theoretic proof of the ‘somewhat unexpected fact that an
injective morphism of an algebraic variety into itself is surjective’ (Armand
Borel’s description). Borel [27] and Shimura promptly found proofs not
using model theory; then M. Raynaud pointed out (in a footnote to Borel’s
paper) that Grothendieck had essentially proved the result already in 1967
by sheaf methods. The outcome seemed to be that the model-theoretic
proof was elegant but unnecessary, and Ax’s result owed more to his skill as
a mathematician than it did to his model-theoretic approach. It seems not
to have inspired other geometers or number theorists to learn model theory.

There is a similar story to tell about Robinson’s use of nonstandard
analysis to solve the problem whether square roots of compact operators
on Hilbert spaces have invariant subspaces ([19], 1966). In a telephone
interview with Dauben ([38] p. 327), Chang rightly said ‘Major credit must
go to Robinson’; but he said ‘to Robinson’, not ‘to nonstandard analysis’.

One-off successes of this kind were never a likely way to win converts
to model theory from outside. Sometimes model theorists claimed to have
better model-theoretic proofs of known results from other branches of math-
ematics; this was even less calculated to win friends and influence people.

In fact the idea of ‘applying model theory to actual mathematics’ was
already growing rusty by 1970. By that date most model theorists regarded
model theory itself as a part of actual mathematics. And in any case the
natural ebb and flow of mathematical research throws up much subtler re-
lationships than ‘applying area X in area Y ’. For example two areas may
overlap; questions or methods of common interest form a weak overlap, and

33



a stronger overlap is where the same researchers place themselves in both
fields.

Certainly model theory had for a time a strong overlap of this kind with
set theory. Tarski noted already in 1950 that ([208] p. 705) ‘set-theoretical
constructions and methods play an essential part in the development of
the general theory of arithmetical classes’. During the 1960s there was a
good deal of interplay between model theory and set theory. Set theory
gave conditions for the existence of various kinds of model, and one of the
first applications of Ronald Jensen’s fine structure theory was to a two-
cardinal question in model theory [99]. In return model theory gave set
theory indiscernibles and ultrapowers. Gaifman, Rowbottom and Silver were
three of the people who could be found on both sides of the divide.

Though few would have predicted it, this proved to be only a temporary
alliance. In the early 1970s something of a revulsion against combinatorial
set theory began to express itself among model theorists. Within first-order
model theory the developments of sections 3 to 5 above seemed to have run
their natural course, and the future lay in applications or in infinitary ana-
logues. The model theory of infinitary logic seemed in danger of lapsing into
axiomatic or descriptive set theory. (One could quote the work of Shelah,
Eklof and Mekler [52] on almost free abelian groups as an example of the
former, and Vaught [217] and Barwise [11] to illustrate the latter.) The one
exception to prove the rule was Shelah, who brought in theorems of Fődor
and Solovay as essential tools of nonstructure theory, and invented proper
forcing for applications in model theory. Shelah’s vigorous use of combinato-
rial set theory, beautiful mathematics though it was, unfortunately did little
to encourage younger researchers to move into the area opened up by Mor-
ley, until Lascar and Poizat [117] published their elegant and set-theory-free
introduction to stability theory in 1979.

The tide might yet turn between model theory and set theory. During
the 1990s several authors pointed to links between descriptive set theory and
current first-order model theory, not least among them Vaught’s Conjecture
[17].

The model theory of sets had a kind of younger brother in the model
theory of arithmetic, which provided a door between model theory and proof
theory. From Skolem to the end of the 20th century, many model theorists
examined models of (first-order) Peano arithmetic and other fragments of
first-order arithmetic. Often these were test cases for general theorems of
model theory. But John Shepherdson, in an influential paper of a more
distinctive kind [190] 1965, proposed using models of fragments of arithmetic
as a way of studying the proof-theoretic strength of these fragments. This
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led to a line of papers in which the model theory and the proof theory
of arithmetic were closely intertwined. Most famously, Jeff Paris and Leo
Harrington [150] in 1977 used a model-theoretic construction to show that
the consistency of Peano arithmetic follows from Peano arithmetic together
with a result intermediate between the finite and infinite Ramsey theorems
(thus providing the first ‘natural’ arithmetical theorem undecidable from
the Peano axioms).

The frontier with universal algebra was also friendly. Model theory and
universal algebra had a common interest in at least the classes axiomatised
by universal Horn theories (for example Mal’tsev [133] 1973 or more recently
Hart et al. [77] 1994), and they both talked about embeddings, homomor-
phisms and direct products in a very general setting. But there was not
much traffic across this frontier. The equation “model theory = universal
algebra + logic” from Chang and Keisler [33] never meant much in practice.

There was also a brief and small-scale liaison with graph theory. Tony
Gardiner [66], when in 1976 he classified the finite homogeneous simple
graphs, had no idea that he was classifying those finite simple graphs whose
complete first-order theory has the quantifier elimination property. When
model theorists noticed it, they saw scope for a range of similar classifi-
cations. One of the first was the classification of countable homogeneous
graphs by Lachlan and Woodrow [113] in 1980 (a paper that set new stan-
dards in beauty for model-theoretic illustrations). But no longterm links
were established; Gardiner’s paper had already almost exhausted the mat-
ters of common interest.

Although set theory, universal algebra and graph theory are unambigu-
ously parts of ‘actual mathematics’, none of them lies close to the central
areas of algebra and algebraic geometry that Robinson and Tarski hoped to
engage with. Before I turn to these areas, I note what happened to non-
standard analysis almost as soon as Robinson introduced it. The subject
had (it seems) very little to give back to model theory, and almost at once
it formed its own largely separate community.

Turning to algebra, one definite success—though on a small scale—was
the study of countable models of ω-categorical theories. As we noted in sec-
tion 6, this is simply the study of oligomorphic permutation groups. But the
equivalence was not cashed in until Dugald Macpherson, a combinatorialist
writing his DPhil under Peter Cameron, approached Lachlan in 1981. Zil-
ber’s work on ω-categorical groups (see section 6 above) became known soon
after, and this brought the group theorist Peter Neumann and his DPhil stu-
dent David Evans onto the scene. This was enough to form the seed of a
research community in the area of overlap. The resulting harvest included
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[29], [83], two works that are equally in model theory and in group theory.
At the end of the century the pace of work had died down, but there was still
unfinished business, for example on covers and on smoothly approximable
structures.

Relations with field theory were harder to pin down, and I have to rely on
personal impressions. After the work of Ax, Kochen and Ershov reported in
section 5, not many field theorists persevered in the area. Michael Fried and
Moshe Jarden were an exception, as witness their book [65] 1986. But on
the model theory side, a number of people built up a great deal of expertise
in one or other area of field theory and function theory. (Names that come
to mind are Chatzidakis, Delon, van den Dries, Gardener, Haskell, Mac-
intyre, Marker, Scanlon, Speissegger, Wilkie, among others.) This group
were capable of taking on classical open problems and solving them using
model-theoretic tools; a typical example was the solution by van den Dries,
Macintyre and Marker of an old problem of Hardy, [47]. Members of this
group were highly respected by ‘classical’ mathematicians who knew little
about model theory. But the communities never really merged. One noticed
that at conferences where members of this group met, there were rarely more
than one or two classical geometers or function theorists—and not for lack
of invitations.

In 1996 [91] Hrushovski published the first proof of the geometric Mordell-
Lang Conjecture in all characteristics. The language of his proof was model-
theoretic, [ASK McQUILLAN FOR A COMMENT?] At the end of the cen-
tury it was still unclear whether Hrushovski’s work had opened up an area
that model theorists and algebraic geometers would be able to cultivate to-
gether. There were some signs that members of the two communities wanted
a closer contact. A number of joint papers by model theorists and geometers
appeared. Hrushovski himself acted as an interpreter between the commu-
nities, for example in [94].

9 Other languages, other structures

In 1885 C. S. Peirce [153], fresh from inventing quantifiers, mentioned that
the universal and the existential quantifier are not the only examples. He
gave the example of the quantifier ‘For two-thirds of all x’. Unfortunately
nobody picked up Peirce’s idea, until in 1957 Mostowski [144] called atten-
tion to the quantifiers ‘For at least ℵα x’. Mostowski’s paper was timely,
because it was useful to have in the 1960s a variety of extensions of first-order
logic for testing out new constructions.
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In 1969 [120] Per Lindström published another timely paper, in which he
gave model-theoretic necessary and sufficient conditions for a logic to have
the same expressive power as first-order logic. His result suggested that it
might be possible to fit the various logics studied during the previous decade
into some higher organisation of logics, within a generalised (or abstract)
model theory. Alas, the facts weren’t there to support such a theory. The
1970s saw some valiant efforts in this direction, and by the mid 1980s a large
amount was known about many different logics extending first-order logic
(see Barwise and Feferman [13]). But the most quotable outcome of any
generality was that very few logics apart from first-order logic satisfy the
Craig interpolation lemma.

The mathematical logicians within computer science shrugged their shoul-
ders and asked what is the interest of a logic in which it’s impossible to
express everyday notions like connectedness, even on finite structures. Thus
for example Gurevich [75] 1984:

The question arises how good is first-order logic in handling finite
structures. It was not designed to deal exclusively with finite
structures. . . . One would like to enrich first-order logic so that
the enriched logic fits better the case of finite structures.

One solution was first-order logic with a fixed-point operator added, as in
Chandra and Harel [31] 1982 and Blass, Gurevich and Kozen [23] 1985. The
model theory of this logic and its relatives were studied mostly by computer
scientists, but this seems to be purely an accident of history; these languages
would have been good to have available in the 1960s. For other various other
reasons, logicians studied logics with only a finite number of variables. (Bar-
wise [12] 1977 was the first of several people who independently described
these logics and their associated pebble games.) Other logicians studied
logics of a modal kind, with or without fixed-point operators. Ehrenfeucht-
Fräıssé back-and-forth games adapt smoothly to these contexts, and there
are computer science applications. During the 1990s the group of Jouko
Väänänen in Helsinki took a particular interest in game-theoretic and com-
binatorial aspects of non-classical logics both large and small (e.g. [98] 1990,
[80] 1996).

One of the early variants of first-order logic was still showing signs of
life in the 1990s. In 1961 Henkin [82] described an extension of first-order
logic where the dependencies between the quantifiers are not controlled by
the order of the quantifiers, for example as in

For all x there is y such that for all z there is w depending only
on z such that R(x, y, z, w).
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Sometimes, as in this example, the dependencies between the quantifiers
could be written as a branching diagram; in which case one spoke of branch-
ing quantifiers. Henkin proposed a semantics in terms of Skolem functions,
and Hintikka [87] later revised it into the form of games of imperfect infor-
mation. There was some debate whether these logics had useful applications
in computer science (e.g. Blass and Gurevich [22] 1986) or in linguistics. But
in themselves they had a problematic model theory, because the semantics
determines only when a sentence is true in a structure, and not whether an
assignment of elements satisfies a formula in a structure. Thus one could
ask about classes defined by axioms in such a logic, but not about relations
definable by a formula in a structure. Work to clarify this continued to the
end of the century.
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