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Historical chart:

13–15th cc Obligationes
1944 Von Neumann and Morgenstern,

Theory of Games and Economic Behavior
1961 Lorenzen,

Dialogisches Konstruktivitätskriterium
1961 Ehrenfeucht,

An application of games to the
completeness problem for formalized theories

1964 Hintikka,
John Locke Lectures: Logic, Language, Games
and Information

1983 Hintikka and Kulas, The Game of Language
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Modelling

When we want to understand a phenomenon P,
we make a copy or model M of it in terms that we find easier to
understand.
To analyse the modelling, we need to identify which features of
M represent which features of P.

The Von Neumann-Morgenstern modelling:

Economic
activity

players,
rules,

payoffs
� Human

game

remove
intentions

� Formal
game
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Four types of logical game:

� Obligationes

� Dialogue games

� Back-and-forth games

� Hintikka (first-order games and game-theoretic semantics)

There are lots of other kinds of logical game.
But Benedikt asked me to compare these four types,
so I will.
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Logical games

A logical game is a pair (G, τ) where

� G is a nonempty set of sequences of length � ω, which is
closed under initial segment and limit;

� τ : G → {1, 2}.

Then G forms a tree branching upwards, under the partial
ordering

ā � b̄ ⇔ ā is an initial segment of b̄.

Maximal elements of G are plays of G;
the remaining elements of G are positions.
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1 and 2 are called players.
A play ā is a win for τ(ā).
A position ā is a turn of τ(ā).

A strategy for player π is a function

Σπ : (The set of turns of π) → G

such that for every turn ā of π,
Σπ(ā) is immediately above ā in G.

A play ā follows Σπ if for every turn ā�n of π, Σπ(ā�n) � ā.
The strategy Σπ is winning if every play that follows Σπ

is a win for π.
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In EF games we will meet another direction of modelling:

Human
game

add
intentions
� Formal

game

proved
equivalence

� Non-game
formalism

At least until recently, logicians using games have been much less
careful about modelling than users of games in economics.
The most careful modellers have been in applications of games to
evolution (Maynard Smith, Hamilton, Dawkins etc.)
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We first review the common part. For our four paradigms the
formal game is a logical game.

Human
game

�� Logical
game
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Strategies define higher positions in terms of lower ones.
So we can read ‘higher’ as ‘later’, and imagine two human
players 1, 2 creating a play.
Player π names the next position after a turn of π.
A strategy for π is a set of instructions telling π what positions
to name.

A winning strategy for π gives π what π needs if π wants to
ensure that the play is a win for π.
So we can pass from logical game to human game by
supposing that a player with winning strategy wants to win.
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Two glitches between human and formal game

(i) going from left to right
Formalising the human game involves choosing a difference
between a move that breaks the game rules
and a move that causes the player to lose at once.
This is not always a real difference in the human game.

(ii) going from right to left
If player π has no winning strategy then the idea that
π ‘wants to win’ represents nothing in the formal game.
(This is one reason why the opponent is sometimes blind
Nature.)
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The game (G, τ) is determined if there exists a winning strategy
for one of the players.

We topologise the set of plays by taking as basic open sets the
sets of the form

{ā ∈ plays : b̄ � ā} (b̄ a position).

The Gale-Stewart Theorem (1953) says that if for some player π
the set of wins for π is open, then the game is determined.

Hence if all plays are finite, the game is determined.
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Logical games count as zero-sum: the payoff is a win for one
player and a lose for the other.

Suppose Σ1 and Σ2 are strategies for players 1, 2.
Then there is a unique play that follows both strategies.
(Hence at least one of the strategies is not winning!)

Von Neumann and Morgenstern give for each game a strategic
(they say normalized) form: the function which,
to each pair Σ1, Σ2, assigns the payoff of the unique play
that follows both strategies. Compared with the strategic form,
the original game is said to be in extensive form.

At least until recently, logicians have always used the
extensive form.
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Example where player 2 has a winning strategy

Q

R

16

Q �
0

R
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Three simplifications of strategies

(1) Since Σπ(ā) always has the form

Σπ(ā) = ā�c

we can boil Σπ down to σπ where σπ(ā) = c.

(2) The question whether σπ is winning depends only on the
values σπ(ā) where the position ā ‘follows’ σπ.
Define σπ

0 , the core of σπ, to be the restriction of σπ to
these positions.

(3) σπ
0 can be defined as a Skolem function, i.e.

a function of the previous moves of the other player.
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A right-to-left modelling: Ehrenfeucht-Fraı̄ssé games

Fraı̈ssé in 1955/6 introduced some formalisms for comparing
two structures A, B of the same finite relational signature.

For example we define for each r < ω a set Gr(A, B) of partial
isomorphisms between A and B.
G0(A, B) is the set of all partial isomorphisms between A and B.
p ∈ Gr+1(A, B) iff: for all a in A there is b in B such that
p ∪ {(a, b)} ∈ Gr(A, B), and likewise with A, B transposed.

Theorem A ≡r B (i.e. they satisfy the same sentences of
quantifier rank � r) iff ∅ ∈ Gr(A, B).
So A ≡ B iff ∅ ∈ ⋂

r<ω Gr(A, B).

Ehrenfeucht 1961 found a definition of Gr(A, B) through games
EFω(A, B).
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Example where player 1 has a winning strategy

N � � � � � � � � . . .

R
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The second player is today often called Duplicator, because this
player wins when she can ‘duplicate’ all the first player’s
choices.
So a winning strategy for her allows her to achieve the aim of
duplicating.

The first player is called Spoiler, because a winning strategy for
him allows him to spoil Duplicator’s chances of duplicating.

Avoid saying that Duplicator is ‘trying to prove A ≡ B’.
A winning play for Duplicator proves nothing at all.
If you are trying to prove A ≡ B, you don’t play the game, you
find a winning strategy for Duplicator in the game.
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A left-to-right modelling: Obligationes

Players are Opponent and Respondent.
Opponent has first move, and from then on the turns alternate
between the players.

The activity seems to have been a regular part of Scholastic
teaching between the mid 13th century and the early 15th
century.
I believe no transcript of a play survives.
But here are two possible reconstructions based on indications
in the texts.
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The very full account in Paul of Venice Logica Magna deduces
the rules from assumptions about the general purpose of the
activity.

“The topic of obligationes is nothing other than the topic of
inferences presented in a more subtle manner, in a way
intended to test whether the respondent has a good head (for
logic) by setting a deceptive course before him. . . . The
respondent is taught to keep up his side of the argument
steadily and without error.” (p. 33)

“Unless this [rule applies], I really do not see how the great
logicians, philosophers, geometers and theologians who have
adopted a similar way of talking, would be able to speak truly
in the cases and assumptions they put before us.” (p. 99)
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So Paul of Venice is himself modelling the obligatio activity
as a human game.

Different authors give different rules for obligationes.
If these authors are all modelling rational inference, then such
differences are presumably differences of opinion about
rational inference, not just differences in the games.
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Example 1: Respondent wins (based on Burley)

(Arbiter) Obligation: The opponent is not wearing a silly hat.
(Opponent, wearing a silly hat) I propose: Some person is
wearing a silly hat.
(Respondent) I respond: True.
(O) I ask: Who is wearing a silly hat?
(R) I respond: I don’t know.
(O) I challenge: You do know.
(R) I defend: If I say ‘the opponent’, I grant a proposition
incompatible with the obligation. If I say ‘Fred’ or ‘Cressida’
or some other person, I grant a proposition that is false and
irrelevant.
(A) The respondent answered well.
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Example 2: Opponent wins (based on Heytesbury via Stump)

(A) Obligation: Respondent believes the king is in London.
(O) I propose: You believe that the king is in London.
(R) I respond: True.
(O) I propose: The king is in London.
(R) I respond: I don’t know.
(O) I propose: You know that the king is in London.
(R) I respond: I don’t know.
(O) I challenge: It is false and irrelevant.
(R) I defend: I can’t deny that I know the king is in London
without contradicting my previous answers.
(A) The respondent answered badly; the opponent’s challenge
was good.
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Lorenzen, and some of his defenders, have thought that one
could also start from rational debate and reach the same games,
thus giving a new ‘foundation’ for logical validity.

All attempts I’ve seen fail, through ludicrous assumptions
about the players’ motivations.

Debit: Lorenzen’s games are a paradigm example of
obfuscation.

Credit: Some adaptations have been successful for other
purposes. E.g. Hyland-Ong computational games,
or the games of Krabbe et al. to model rational dialogue.
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Complicated modelling: Hintikka semantic games

Human
activity
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game
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��
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semantics

� �Tarski truth definition
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Confused modelling: Lorenzen’s games

Lorenzen described, for each first-order sentence φ,
a logical game between Proponent and Opponent; Proponent
has a winning strategy iff φ is intuitionistically provable. In fact
a winning strategy for Proponent forms a sort of proof of φ.

Some of his rules have no motivation except to ensure that
Proponent has a winning strategy for the right sentences.
So the modelling is right-to-left, starting with some kind of
proof system and modelling it through logical games.

A play that Proponent wins is in fact a part of a proof of φ.
Opponent has the job of deciding which part.
No sensible motivation can be given for Opponent.

So the modelling fails at the stage of human game.
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In more detail:

Example 1. Proponent claimed ψ ∧ χ. Then Opponent chooses
which of ψ and χ to proceed with. This is a convenience for
Proponent, who would otherwise have to prove both ψ and χ.

Example 2. Proponent claimed ψ → χ. Then Opponent states ψ.
But a standard way to prove ψ → χ is to state ψ as an
assumption and deduce χ; so Proponent would have stated ψ
anyway.

Does the separation of players clarify the difference between
claims to be proved and assumptions?
No. In answer to ((ψ → χ) → θ), Opponent states ψ → χ,
and then Proponent replies by stating ψ.
So either player can state assumptions.
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In the more recent IF (Independence-Friendly) logic,
Hintikka assumes the Skolem function semantics
but allows the sentence to specify that some arguments
are missing from the Skolem functions.

∀x ((∃y/∀x)y = x ∨ (∃y/∀x)y �= x)

∃c∃d ∀x (c = x ∨ d �= x)

At ∨, player ∃ chooses left if ∀ chose 0 for x, right otherwise.
Then she takes c or d to be 0, independent of the choice for x.

This develops a non-game-theoretic idea of Henkin.
Game-theoretically it’s equivalent to requiring that the player
chooses with incomplete information about the current position.
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Hintikka claimed that in IF logic the modelling has to start with
Skolem functions, not with a Tarski-style semantics.

Hodges (1996) gave a Tarski-style semantics for IF logic,
equivalent on sentences to the Skolem function semantics.

Väänänen’s Dependence Logic is an improvement of Hodges’
semantics,
and is almost certainly a better starting-point for the IF
enterprise than the Henkin-Hintikka Skolem functions.
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Begin at the righthand end, in a formal language for arithmetic:

∀x∃y∀z (y > x ∧ (y �= 2z))

Skolemise:

∃F ∀x∀z (F(x) > x ∧ F(x) �= 2z)

Game: player ∀ chooses number a for x, then player ∃ chooses b
for y. Then ∀ chooses c for z, and either left or right conjunct.
Player ∃ wins iff

b > a (resp. b �= 2c)

If (as here) the sentence is true, a Skolem function F exists.
This Skolem function can be read as a winning strategy for ∃.
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This generalises to all first-order sentences interpreted in a
structure.
The sentence is true iff player ∃ has a winning strategy.
If it’s true, Skolem functions provide a winning strategy for ∃.

Game-Theoretic Semantics generalised this to a wide range of
natural language sentences, suitably formalised.

The player ∀ was assumed to be Nature.
This is sound, as Hintikka’s modelling usually is. But:

(1) He sometimes ascribed motives to Nature. (More recently
he has been more cautious about this.)
(2) Against his own better judgement, he sometimes wrote
as if a real-life speaker is playing a game against Nature.


