Four paradigms for logical games

Wilfrid Hodges http://wilfridhodges.co.uk

Amsterdam, March 2010

Dates and references

13th–15th centuries: Obligationes

- Paul of Venice, *Logica Magna ii 8: Tractatus de Obligationibus*, ed. E. Jennifer Ashworth, Oxford University Press, Oxford 1988.
- Catarina Dutilh Novaes, *Formalizations Après la Lettre*, Haveka, Alblasserdam 2005; see Part 3 'Obligationes as logical games'.
- Eleonore Stump, *Dialectic and its Place in the Development of Medieval Logic*, Cornell University Press, Ithaca 1989; see Chapter 11 'Roger Swyneshed's theory of obligations'.

1944: Game Theory

• John von Neumann and Oskar Morgenstern, *Theory of Games and Economic Behavior*, Princeton University Press, Princeton 1944.

1956/61: Ehrenfeucht-Fraïssé games

- Roland Fraïssé, 'Étude de certains opérateurs dans les classes de relations, définis à partir d'isomorphismes restreints', *Zeitschrift für Mathematische Logik und Grundlagen der Mathematik* 2 (1956) 59–75.
- Andrzej Ehrenfeucht, 'An application of games to the completeness problem for formalized theories', *Fundamenta Mathematicae* 49 (1961) 129–141.

1961: Lorenzen games

- Paul Lorenzen, 'Ein dialogisches Konstruktivitätskriterium', in *Infinitistic Methods*, PAN, Warsaw 1961, pp. 193–200.
- Wilfrid Hodges, 'Dialogue foundations: A sceptical look', *Proceedings of the Aristotelian Society*, Supplementary Volume 75 (2001) 17–32; cf. also the paper of Erik Krabbe in the same volume.

Hintikka Game-Theoretic Semantics

- Leon Henkin, 'Some remarks on infinitely long formulas', in *Infinitistic Methods*, PAN, Warsaw 1961, pp. 167–183; see pp. 180ff on Skolem function semantics for non-linearly-ordered quantifiers.
- (1964/73: First order logic) Jaakko Hintikka, *Logic Language Games and Information*, Clarendon Press, Oxford 1973; see Chapter V 'Quantifiers, language-games, and transcendental arguments'.
- (1983: Game-theoretic semantics) Jaakko Hintikka and Jack Kulas, *The Game of Language: Studies in Game-Theoretical Semantics and its Applications*, Reidel, Dordrecht 1983.
- (1989: Independence-Friendly Logic) Jaakko Hintikka and Gabriel Sandu, 'Informational independence as a semantical phenomenon', in *Logic, Methodology and Philosophy of Science VIII*, ed. J. E. Fenstad et al., Elsevier, Amsterdam 1989, pp. 571–589.
- Jouko Väänänen, *Dependence Logic*, Cambridge University Press, Cambridge 2007.

Modelling

- John Maynard Smith, *Evolution and the Theory of Games*, Cambridge University Press, Cambridge 1982.
- Wilfrid Hodges, 'Functional modelling and mathematical models: a semantic analysis', in *Philosophy of Technology and Engineering Sciences* (*Handbook of the Philosophy of Science*), ed. Anthonie Meijers et al., North-Holland, Amsterdam 2009, pp. 665–692.

Logical games

A logical game is a pair (G, τ) where

- *G* is a nonempty set of sequences of length ≤ ω, which is closed under initial segment and limit;
- $\tau: G \to \{1, 2\}.$

Then G forms a tree branching upwards, under the partial ordering

 $\bar{a} \preccurlyeq \bar{b} \Leftrightarrow \bar{a}$ is an initial segment of \bar{b} .

Maximal elements of *G* are *plays* of *G*; the remaining elements of *G* are *positions* of *G*. The numbers 1, 2 are called *players*. A play \bar{a} is a *win for* $\tau(\bar{a})$. A position \bar{a} is a *turn of* $\tau(\bar{a})$. Logical games count as zero-sum: the *payoff* is a win for one player and a lose for the other.

A *strategy* for player π is a function

 Σ^{π} : (The set of turns of π) $\rightarrow G$

such that for every turn \bar{a} of π , $\Sigma^{\pi}(\bar{a})$ is immediately above \bar{a} in G. A position or play \bar{a} follows the strategy Σ^{π} if for every turn $\bar{a} \upharpoonright n$ of π with $n < \ell h(\bar{a}), \Sigma^{\pi}(\bar{a} \upharpoonright n) \preccurlyeq \bar{a}$. The strategy Σ^{π} is *winning* if every play that follows Σ^{π} is a win for π . The game (G, τ) is *determined* if there exists a winning strategy for one of the players.

We topologise the set of plays by taking as basic open sets the sets of the form

 $\{\bar{a} \in \text{plays} : \bar{b} \preccurlyeq \bar{a}\}\ (\bar{b} \text{ a position}).$

The *Gale-Stewart Theorem* (1953) says that if for some player π the set of wins for π is open, then the game is determined. Hence if all plays are finite, the game is determined.

Suppose Σ^1 and Σ^2 are strategies for players 1, 2. Then there is a unique play that follows both strategies. (Hence at least one of the strategies is not winning!) Von Neumann and Morgenstern give for each game a *strategic* (they say *normalized*) form. This form is the function which, to each pair Σ^1, Σ^2 , assigns the payoff of the unique play that follows both strategies. Compared with the strategic form, the original game is said to be in *extensive* form. At least until recently, logicians have always used the extensive form.

Strategies can be simplified in three ways.

(1) If the position \bar{a} is a turn for π , then $\Sigma^{\pi}(\bar{a})$ has the form

$$\Sigma^{\pi}(\bar{a}) = \bar{a}^{\frown}c$$

for some *c*. Instead of defining Σ^{π} , we can define

$$\sigma^{\pi}(\bar{a}) = c.$$

Then we can translate the notions of a position or play *following* a strategy, and of a *winning* strategy, from Σ^{π} to σ^{π} .

- (2) For each strategy σ^{π} define the *core* σ_0^{π} to be the restriction of σ^{π} to positions which follow σ^{π} . The question whether σ^{π} is winning is determined by its core.
- (3) Given a player π and a position $\bar{a} = (a_0, \dots, a_{\ell-1})$, define $\bar{a}^{(\pi)}$ to be the sequence $(b_0, \dots, b_{\ell-1})$ where for each $n < \ell$,

$$b_n = \begin{cases} \star & \text{if } \bar{a} \upharpoonright n \text{ is } \pi' \text{s turn,} \\ a_n & \text{otherwise.} \end{cases}$$

Then a core σ_0^{π} is recoverable from the function $\sigma_0^{(\pi)}$ defined on the set of sequences $\bar{a}^{(\pi)}$ (where \bar{a} is a position that follows σ^{π} and is π 's turn) by:

$$\sigma_0^{(\pi)}(\bar{a}^{(\pi)}) = \sigma^{\pi}(\bar{a}).$$

(A strategy can be defined as a function of moves of the other player.)

Von Neumann and Morgenstern also considered games of *imperfect information*, where the domain of a strategy of π is a surjective image of the set of turns of π . In this case simplification (3) fails in general, because information suppressed by putting \star may be needed to define the strategy (the phenomenon of *signalling*).