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Logical games
A logical game is a pair (G, 7) where

e ( is a nonempty set of sequences of length < w, which is closed
under initial segment and limit;

o 7:G —{1,2}.
Then G forms a tree branching upwards, under the partial ordering
a < b < aisan initial segment of b.

Maximal elements of G are plays of G; the remaining elements of G are
positions of G. The numbers 1, 2 are called players. A play a is a win for
7(a). A position a is a turn of 7(a). Logical games count as zero-sum:
the payoff is a win for one player and a lose for the other.

A strategy for player 7 is a function
Y™ : (The set of turns of 1) — G

such that for every turn a of 7, ¥7(a) is immediately above a in G. A
position or play a follows the strategy X7 if for every turn a[n of m with
n < fh(a), X" (aln) < a. The strategy 3™ is winning if every play that
follows X7 is a win for 7. The game (G, 7) is determined if there exists a
winning strategy for one of the players.

We topologise the set of plays by taking as basic open sets the sets of the
form
{a € plays : b < a} (baposition).

The Gale-Stewart Theorem (1953) says that if for some player 7 the set of
wins for 7 is open, then the game is determined. Hence if all plays are
finite, the game is determined.

Suppose ! and %2 are strategies for players 1, 2. Then there is a unique
play that follows both strategies. (Hence at least one of the strategies is not
winning!) Von Neumann and Morgenstern give for each game a strategic
(they say normalized) form. This form is the function which, to each pair
¥1, 32, assigns the payoff of the unique play that follows both strategies.
Compared with the strategic form, the original game is said to be in
extensive form. At least until recently, logicians have always used the
extensive form.



Strategies can be simplified in three ways.

(1) If the position a is a turn for 7, then ¥7(a) has the form

> (a) = a”

o

for some c. Instead of defining ™, we can define
o’ (a) = c.

Then we can translate the notions of a position or play following a
strategy, and of a winning strategy, from X7 to o™.

(2) For each strategy o™ define the core o to be the restriction of o™ to
positions which follow ¢”. The question whether ¢7 is winning is
determined by its core.

(3) Given a player 7 and a position a = (ao, . .., a,—1), define a™ to be
the sequence (b, ..., b,—1) where for each n < ¢,

poo L * if a[n is 7’s turn,
"\ a, otherwise.

Then a core o is recoverable from the function a((fr) defined on the
set of sequences a(™ (where @ is a position that follows ¢™ and is 7’s
turn) by:
(™) (= (m)\ — (A
oy (@) =o"(a).
(A strategy can be defined as a function of moves of the other
player.)

Von Neumann and Morgenstern also considered games of imperfect
information, where the domain of a strategy of 7 is a surjective image of the
set of turns of 7. In this case simplification (3) fails in general, because
information suppressed by putting x may be needed to define the strategy
(the phenomenon of signalling).



