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Abstract

Abstract. Haim Gaifman conjectured in 1974 that if T is a complete
first-order theory which is relatively categorical over its relativisation
TP to a predicate P , then every model B of TP can be extended to a
model A of T with AP = B. He proved this when T is rigid over P ,
and it holds also for some cases of relative categoricity in uncountably
categorical theories. In what may be the first example going signifi-
cantly beyond these two types, we show that the conjecture is true
when the relatively categorical theory T is the theory of an abelian
group with P selecting a subgroup.

1 Gaifman’s conjecture

In [5] Haim Gaifman introduced some notions equivalent to the following.
LetL be a first-order language, P a 1-ary relation symbol not inL, andL(P )
the language which results from adding P to L. Let T be a complete theory
in L(P ), with the property that if A is any model of T , then the L-reduct
A�L of A has a substructure AP whose domain is the interpretation of P in
A. Note that the complete first order Th(AP ) of AP depends only on T ; we
write it TP .

Definition 1.1 (a) We say that such a theory T is relatively categorical if
whenever A,C are models of T and i : AP → CP is an isomorphism,
then i extends to an isomorphism j : A→ C.

(b) Gaifman’s conjecture states that if T is relatively categorical, then for
every model B of TP there is a model A of T with B = AP .

1



For Gaifman’s own statement see [5], the turn of pages 31 and 32. Gaif-
man’s conjecture is true when L is countable and T is rigid (which means
that the isomorphism j in Definition 1.1(a) above is unique). Gaifman him-
self conjectured a proof of this in a footnote on page 32 of [5], and con-
firmed it later (cf. [6] Theorem 12.5.8, p. 645). As Gaifman noted, that proof
doesn’t generalise to the case where T is not rigid. We now know that there
is a cohomological obstruction. If T is relatively categorical, then for every
model A of T , restriction to AP is a natural surjective group homomor-
phism ν : Aut(A) → Aut(AP ) (where Aut(A) is the automorphism group
of A). Gaifman’s construction of A from AP implies that ν is a split surjec-
tion, in the sense that there is a group embedding ι : Aut(AP ) → Aut(A)
such that νι = 1Aut(AP ). So the construction fails when ν is not split.

Example. Let the group A be Z(4)(ω). Write ai for a generator of
the i-th direct summand (i < ω). MakeA into an L(P )-structure
by taking AP to be the subgroup generated by {2ai : i < ω}.
Then the theory of A is relatively categorical. The natural re-
striction map ν : Aut(A) → Aut(AP ) is not a split surjection;
this is proved in Evans, Hodges and Hodkinson [2].

Two facts about this example are worth noting. First, the same example
appears in Ahlbrandt and Ziegler [1] as an example of an ω1-categorical
theory, where P selects a strongly minimal set. Every ω1-categorical the-
ory with a strongly minimal set selected by P is an example of a relatively
categorical theory. Theories of this kind do satisfy Gaifman’s conjecture.
But they are hardly typical. For example if the L(P )-structure A is Z with
AP = 2Z, then Th(A) is relatively categorical but Th(AP ) is not even super-
stable.

Second, let B be AP and let B′ be the subgroup of B generated by {2ai :
0 < i < ω}. Then B′ 4 B, and we can find a substructure A′ of A with
A′ ≡ A and (A′)P = B′ by taking A′ to be generated by {ai : 0 < i < ω}.
This is a special case of Gaifman’s conjecture. But A′ is not unique with
these properties; taking a1 to a1 + 2a0 and keeping the other generators of
A fixed, we get an automorphism of A which fixes B′ pointwise but moves
A′ to a different subgroup of A. In this context, we can’t hope to prove the
conjecture by finding the required A′ as the set of all elements of A that
satisfy some condition.

In 1986 Saharon Shelah published [9], which generalises relative cate-
goricity by allowing a limited number of isomorphism types of A over a
given AP . The paper is famously difficult; its contents have never been re-
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worked and brought into the mainstream. Very possibly the paper contains
ideas sufficient for a proof of Gaifman’s conjecture; though if it does, they
are not yet in a form that logicians in general can use. It will be sensible to
try to correlate features of the proof below with notions that Shelah uses.

At the meeting in Constanţa for Şerban Basarab’s seventieth birthday,
I sketched a proof of Gaifman’s conjecture for theories of abelian group
pairs that are relatively categorical for a pair of cardinals (as defined in [7]),
and a way of generalising this proof to a larger class of theories. Writing
this paper, I found that a detailed report of reasonable length would have
to cover less ground. So below I restrict to the case of theories that are
relatively categorical absolutely. There was no space here to discuss the
pure model-theoretic core.

My warm thanks to the energetic and helpful organisers of the Constanţa
meeting, and to Şerban Basarab himself for being both an inspiration to
workers in the model theory of algebra, and also seventy years old.

2 Preliminaries

2.1 Models of relatively categorical theories

Henceforth the language L is the first-order language of abelian groups.
By an abelian group pair we mean an L(P )-structure A which is an abelian
group with AP a subgroup. We write T for a complete theory of abelian
group pairs in L(P ).

Fact 2.1 If T is relatively categorical, then for every formula φ(v0, . . . , vn−1) of
L(P ) there is a formula (φ)◦ such that for every model A of T and every n-tuple b̄
of elements of AP ,

A |= φ(b̄) ⇔ AP |= (φ(b̄))◦.

The property ascribed to T by Fact 2.1 is known as the (Uniform) Reduc-
tion Property. In fact this is a property of all relatively categorical first-order
theories, without any restriction to abelian groups; cf. [6] p. 641, Lemma
12.5.1.

Fact 2.2 Let T be relatively categorical. Then for every model A of T , A/AP is
a group of finite exponent. Moreover there is a finite abelian group pair D0 with
DP

0 = {0}, such that every model A of T has the form A = C ⊕ D where C,D
as groups are subgroups of the group A, AP = CP , D is isomorphic to D0 and
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C is tight over CP . The theory Th(C) is relatively categorical and is uniquely
determined by T .

This fact draws together a number of results in [7]; see in particular
Theorem 14.1 there. The notion of ‘tight’ is explained in [7]; we will not
need it, but we will need a special case of it which is explained in subsection
2.2 below. Fact 2.2 reduces Gaifman’s conjecture for T to the case where all
models AP of T are tight over AP .

Fact 2.3 Suppose T is relatively categorical and every model A of T is tight over
AP . Then there are finitely many primes p0, . . . , pn−1 and relatively categorical
theories T0, . . . , Tn−1 such that every modelA of T is a pushout overAP of models
Ai of Ti (i < n) with APi = AP , and for each i < n, Ai/APi is a pi-group of finite
exponent.

This fact again draws together several results from [7]; see in particular
sections 5 and 12 in [7]. The notion of pushout is standard universal alge-
bra, but in Section 5 below we will explain what we need of it. The effect of
Fact 2.3 is to reduce Gaifman’s conjecture for T to the case where there are
a prime p and a finite h0 such that all models A of T are tight over AP and
A/AP is a p-group of exponent h0.

2.2 Algebraic facts and definitions

Suppose A is an L(P )-structure and X a set of elements of A. We write 〈X〉
for the subgroup of A generated by X . We extend the language L(P ) of
A to a first-order language L(P,X) by introducing each element of X as a
constant. We write (A,X) for the expansion of A to an L(P,X)-structure
by taking each element of X to name itself.

Let p be a prime. We write pkA for the subgroup of elements a of A
such that for some c ∈ A, pkc = a, and pkA[p] for the subgroup of pkA
consisting of the elements a such that pa = 0. We say that A is p-bounded
over its subgroup B if for some finite h0, ph0A ⊆ B.

Suppose A is an abelian group and B a subgroup over which A is p-
bounded. Then we say that A is tight over B if for each k < ω,

pkA[p] ⊆ pk+1A+B.

(This is not the definition of ‘tight’ in [7], but by the argument of [7] Lemma
8.8 it is equivalent to that definition under the assumption that A is p-
bounded over B.) Note that if A is tight over B then A is tight over every
group C with B ⊆ C ⊆ A.
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Let A be an abelian group and a an element of A. For any natural num-
ber h we say that a has p-height at least h in A if a ∈ phA. If we count a
as having p-height ∞ when it has p-height at least h for each h < ω, then
each element a of A has a unique p-height in A, which is either a natural
number or ∞. We write this p-height as htAp (a); when the context allows,
we sometimes omit the superscript A. Note that when h is finite, there is a
first-order formula expressing that htp(x) > h, and hence also a first-order
formula expressing that htp(x) = h.

Suppose the abelian groupA is p-bounded over its subgroupB, and a is
an element of A. Then a is said to be proper over B in A if htAp (a) is maximal
among the p-heights htAp (a+ b) with b ∈ B. Note that if C is a subgroup of
B and a is proper over B, then a is proper over C.

Lemma 2.4 Suppose B is a subgroup of A over which A is p-bounded and tight,
and a is an element of A which is proper over B. Then

htAp (pa) = htAp (a) + 1.

Proof. Put h = htAp (a). Then for some element d of A, phd = a. It
follows that pa has p-height at least h + 1; we must show that it has p-
height at most h + 1. For contradiction suppose there is an element c of A
such that ph+2c = pa. Then

p(ph+1c− phd) = pa− pa = 0.

Now A was assumed tight over B, so

ph+1c− phd ∈ phA[p] ⊆ ph+1A+B.

Hence there is b ∈ B such that a + b = phd + b has p-height > h + 1,
contradicting that p is proper over B. �

Suppose the abelian group A has a subgroup B. We say that p-heights
are preserved between A and B if for each element b of B, htAp (b) = htBp (b).
Note that this is automatically true if B 4 A. A key part of our argument
in section 4 below will be that under certain conditions the converse holds
too.

Much of the next section relies on the following assumption:

(†) A is an abelian group which is tight and p-bounded over its
subgroup B, and ph0 is the exponent of A/B.
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3 Exploiting Kaplansky and Mackey

3.1 KM sequences, algebraic description

An essential tool in [7] was the Kaplansky-Mackey back-and-forth proof [8]
of Ulm’s Theorem, as described in Fuchs [4] section 77. The main task of the
present section will be to extract the first-order content of the Kaplansky-
Mackey procedure in the case of tight extensions. We convert the proce-
dure into a recipe for constructing sequences of elements within a single
structure. The original back-and-forth idea will make a brief but crucial
reappearance in Lemma 3.11 below.

Definition 3.1 Let A and B be abelian groups, with B a subgroup of A. A
KM(A,B) sequence is a sequence ā = (ai : i < α) of elements of A, such that
for each i < α,

(i) pai ∈ 〈ā�i〉+B.

(ii) ai has finite p-height in A.

(iii) ai is proper over 〈ā�i〉+B in A.

The subgroup generated by ā over B is the subgroup 〈ā〉+B.

Lemma 3.2 If (ai : i < α) is a KM(A,B) sequence, then for all i < α, ai /∈ 〈ā�
i〉+B.

Proof. By (iii) in Definition 3.1, htp(ai − c) 6 htp(ai) for each c ∈ 〈ā �
i〉+B. If ai was such a c, we would have

∞ = htp(0) = htp(ai − ai) 6 htp(ai),

which is impossible since htp(ai) is finite by (ii) in Definition 3.1. �

Lemma 3.3 Assume (†). Then every KM(A,B) sequence can be extended to a
KM(A,B) sequence which generates A over B.

Proof. Suppose ā = (ai : i < α) is a KM(A,B) sequence. Write C for
〈ā〉 + B, and suppose C 6= A, so that there is some element a ∈ C \ A.
Since A/B has exponent ph0 , there is some least h 6 h0 such that pha ∈ C,
and so ph−1a /∈ C. If c is any element of C then again ph−1a + c /∈ C, so
ph−1a+ c has p-height < h0. Therefore among all c ∈ C there is one c′ such
that ph−1a + c′ has maximal p-height h′ in A, i.e. is proper over C. Putting
aα = ph−1a+ c′ extends the KM(A,B) sequence.
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Now we proceed by induction on the ordinals. Starting with ā, we use
the recipe of the previous paragraph to add elements at the end for so long
as the resulting KM(A,B) sequence fails to generate A over B. The process
must halt with a sequence ā′ of length < |A|+, since by Lemma 3.2 the a′i
are distinct for distinct i. Since ā′ can’t be extended to a longer KM(A,B)
sequence, it must already generate A over B. �

Lemma 3.4 Assume (†), and let ā be a KM(A,B) sequence. Suppose c̄ is a finite
subsequence of ā. Then there is a finite subsequence d̄ of ā which includes c̄ and is
a KM(A,B) sequence.

Proof. Let ā be (ai : i < α), and recall from Definition 3.1 that for each
i < α, pai ∈ 〈ā�i〉 + B. We say that a subset W of α is closed if for every i
in W there is a finite subsequence ē of ā�i such that each item in ē is aj for
some j < i with j ∈ W , and pai ∈ 〈ē〉 + B. An application of König’s tree
lemma shows that each finite subset of α is contained in a finite closed set.

The lemma follows if we show that for each closed subset W of α, the
restriction d̄ of ā to those ai with i ∈ W is a KM(A,B) sequence. List W in
increasing order as (ij : j < `), so that d̄ = (aij : j < `). By Definition 3.1
we need to show that for each j < `,

(i) paij ∈ 〈d̄�j〉+B.

(ii) aij has finite p-height in A.

(iii) aij is proper over 〈d̄�j〉+B in A.

Here (i) follows from the definition of closed set, and (ii) follows from (ii)
for ā. For (iii) it suffices to note that 〈d̄�j〉 ⊆ 〈ā�ij〉. �

Suppose B is a subgroup of N . We say that a KM(M,N )-sequence ā has
support in B if for each i, pai ∈ 〈ā�i〉+B.

3.2 KM sequences, model-theoretic description

There are two main gaps to be bridged between the ideas of Kaplansky
and Mackey and first-order logic. One is that the notion of being proper
over a subgoup is hard to express with first-order formulas, and this ac-
counts for some unnaturalness in the conditions (i:c) and (i:c)− in Lemma
3.6 below; maybe I missed some clearer way of doing it. The other is that
Kaplansky and Mackey operate with equations and heights; it’s only when
we have equations and heights under good enough control to generate au-
tomorphisms that we can start to handle general first-order properties. (Cf.
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Lemma 3.12 below.) I strongly suspect that some kind of ‘quantifier elimi-
nation over P ’ is at work here, but I don’t yet have a good formulation of
it.

Definition 3.5 Assuming (†), we define Th(A,B)KM to consist of the fol-
lowing sentences of L(P,B):

(a) The first-order theory of abelian group pairs.

(b) First-order statements expressing that A is tight over B and A/B has
exponent ph0 .

(c) All true equations and negated equations in Th(A,B).

(d) All true sentences in Th(A,B) of the form P (t) or ¬P (t), where t is a
closed term of L(P,B).

(e) All true sentences in Th(A,B) of the form htp(t) > k or htp(t) < k
where t is a closed term of L(P,B) and k is a positive integer.

We want a description of KM(A,B) sequences in terms of first-order
properties of the structure (A,B). In short, we want to describe the type
tp(ā/B), in A and over B, of the KM(A,B) sequence ā. For this we intro-
duce the following notation.

We fix a sequence v̄ = (vi : i < ξ) of variables indexed by ordinals
(where ξ is taken large enough for the purpose in hand), and another se-
quence of variables (zi : i < ω). The idea will be that the variables vi range
over elements of A while the variables zi range over elements of B. The
type tp(ā/B) will be written in the language L(P,B) with the variables vi;
writing ā = (ai : i < α), the variable vi will stand for the element ai.

A term t (always in the language of abelian groups) will have variables
from the vi’s and other variables from the zi’s. We write Term(i) for the set
of all terms t(v̄�i; z̄); here z̄ is some tuple from the zi’s, and of course only
finitely many of the variables in v̄�iwill actually occur in t(v̄�i; z̄). We write
Term(i, B) for the set of terms of the form t(v̄ � i; b̄) such that t ∈ Term(i)
and b̄ is from B.

Lemma 3.6 Assume (†). Let ā = (ai : i < α) be a sequence of elements of A.
Then the following are equivalent:

(1) ā is a KM(A,B) sequence.

(2) For each i < α there are h < h0 and a term t(v̄) ∈ Term(i, B) such that
tp(ā/B) contains the formulas
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(i:a) pvi = t.
(i:b) htp(vi) = h.
(i:c) For each term t′(v̄�i; z̄) ∈ Term(i),

∀z̄ (P (z̄) ∧ htp(t′(v̄�i; z̄)) > h→ htp(t+ pt′(v̄�i; z̄)) 6 h+ 1).

(3) As (2), but with (i:b) and (i:c) replaced by

(i:b)− htp(vi) > h.
(i:c)− For each term t′(v̄�i; z̄) ∈ Term(i) and each b̄ in B,

htp(t′(v̄�i; b̄)) > h→ htp(t+ pt′(v̄�i; b̄)) 6 h+ 1.

Proof. First we show that (2) and (3) are equivalent. Clearly (2) entails
(3), given that by Definition 3.5(d), Th(A,B)KM identifies the tuples in B.
For the converse, note first that if ā�i satisfies each formula in (i:c)−, then it
also satisfies those in (i:c) by the truth definition for universal quantifiers.
Second, (i:a) and (i:c)− together imply that htp(vi) 6 h; for otherwise t has
p-height at least h+ 2, which contradicts (i:c)− when t′(v̄�i; b̄) is taken to be
0.

It remains to show that (1) and (2) are equivalent.

(1)⇒ (2): Let i < α and let h be the p-height of ai in A. We prove (i:a),
(i:b), (i:c) when the variables vi are taken to stand for the elements ai.

(i:a) By (i) in Definition 3.1, pai ∈ 〈ā�i〉+B. But each element of 〈ā�i〉+B
has the form t(ā�i; b̄) for some term t in Term(i).

(i:b) is by (†), Definition 3.1(ii) and the choice of h.
(i:c) As t′ ranges over Term(i) and z̄ ranges over tuples in B, t′(v̄′; z̄)

ranges over 〈ā�i〉+ B. So it suffices to consider any element c of 〈ā�i〉+ B
of p-height> h, and show that t(v̄; b̄)+pc, i.e. pvi+pc, has p-height6 h+1.
Now since c has p-height> h = htp(vi), the element vi+ c has p-height> h,
and hence by (iii) in Definition 3.1 is proper over 〈ā�i〉+B and has p-height
exactly h. It follows by Lemma 2.4 that pvi + pc has p-height h+ 1 in A.

(2)⇒ (1): Let i < α. We prove (i), (ii), (iii) in Definition 3.1.
(i) By (i:a) the element pai is t(ā′; b̄) for some subsequence ā′ of ā�i and

some b̄ in B.
(ii) follows at once from (i:b).
(iii) Suppose c is in 〈ā � i〉 + B, and hence is t′(ā � i; b̄′) for some term

t′ ∈ Term(i). We have to show that ai + c has p-height at most htp(ai),
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which is h by (i:b). The p-height of ai + c can be > h only if htp(c) = h, so
without loss we can assume this. Then by (i:c), pai+pc has p-height at most
h+ 1, so that ai + c has p-height at most h as required. �

Definition 3.7 Assume (†).

(a) A KM(A,B) preschedule (of length α) is a set Γ of formulas of L(P,B)
that consists of, for each i < α, a formula of the form (i:a) of Lemma
3.6 for some term t ∈ Term(i, B), a formula of the form (i:b) for some
h < h0, and the formulas (i:c).

(b) A KM(A,B) schedule is a KM(A,B) preschedule Γ such that Th(A,B)KM∪
Γ is finitely consistent.

(c) If ā is a KM(A,B) sequence of length α, Γ is a KM(A,B) preschedule
and Γ ⊆ tp(ā/B), then we describe Γ as the schedule of ā. (It meets the
definition of KM(A,B) schedule in (b) above by Lemma 3.6.)

(d) If Γ is a KM(A,B) preschedule, we write Γ�i for the set of formulas
(j:a), (j:b) and (j:c) in Γ with j < i.

(e) The support of the KM(A,B) preschedule Γ is the set of constants b ∈
B which occur in formulas in Γ.

These definitions raise some obvious questions. (1) Does a KM(A,B)
sequence determine its schedule (as defined in Definition 3.7(c)) uniquely?
(2) Given the structure (A,B), does the schedule of the KM(A,B) sequence
ā determine tp(ā/B)? (3) Is every KM(A,B) schedule the schedule of some
KM(A,B) sequence? Here are some brief comments on these questions.

(1) The answer is strictly No: for example the term t in (i:a) could be
replaced by t+ 0, or it could have redundant variables. But this is the only
indeterminacy, since when t is fixed, both (i:b) and (i:c) are determined by
the height htp(ai). Also the element pai named by t(ā�i) is determined by
ā; and if t1 is another term in Term(i) such that t1(ā � i) names pai, then
Lemma 3.8(b) below will show that

Th(A,B)KM ∪ Γ�i ` t(ā�i) = t1(ā�i).

So the indeterminacy is slight.
(2) The answer is Yes, by Remark 3.14 below.
(3) The answer is Yes; this is Corollary 3.10 below.
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3.3 Technical properties of Kaplansky-Mackey

Lemma 3.8 Assume (†). Let Γ be a KM(A,B) schedule of length α, and suppose
i < α. Then from Γ�i and Th(A,B)KM we can deduce the following formulas:

(a) (For each term t(v̄) ∈ Term(α,B))
Either the formula (t(v̄; b̄) = 0) or the formula (t(v̄; b̄) 6= 0).

(b) (For each t as in (a))
Either the formula P (t(v̄)) or the formula ¬P (t(v̄)).

(c) (For each t as in (a))
Either a formula (htp(t(v̄)) = h) for some h < h0, or the formula (htp(t(v̄)) >
h0).

(d) Each formula in (i:c)− (as in Lemma 3.6 — and note that we really do mean
(i:c) and not (i+ 1:c)).

Proof. We prove (a)–(c) of the lemma for each term t(v̄; z̄) in Term(i)
and each b̄) in B, by induction on i 6 α.

If i = 0 then terms in Term(0) contain no variables, so that (a)–(c) are
determined by Th(A,B). There is nothing to prove at limit ordinals.

Assume then that (a)–(c) of the lemma are proved for terms in Term(i, B),
and t(v̄) is in Term(i+ 1, B) \ Term(i, B). Then vi is the highest-numbered
variable in t(v̄), so that t(v̄) can be written asmvi+ t′ where t′ ∈ Term(i, B).

If p divides m then t(v̄) is provably equal to a term t1 in Term(i, B), so
the induction hypothesis applies. If p doesn’t divide m then m is prime to
p, so that for some n prime to p, nm ≡ 1 (mod p). The answers to (a)–(c)
are not affected by multiplying t(v̄) by n, so we can assume henceforth that
t(v̄) has the form vi + t′ with t′ ∈ Term(i, B).

The answer to (a) is 6=, by the proof of Lemma 3.2. The answer to (b) is
¬P ; for if P (vi + t′) then vi + t′ = b for some b ∈ B, and hence vi = b − t′,
contradicting Lemma 3.2 again.

We show (c). By (i:b) in Γ�i + 1, htp(vi) = h for some h < h0. Let h′ be
htp(t′); by induction hypothesis Γ�i and Th(A,B)KM determine h′. By first-
order properties of height, htp(vi+t′) is min{h, h′} and hence is determined
by Th(A,B)KM ∪ (Γ � i + 1), unless possibly when h = h. If h = h′ then
certainly htp(vi + t′) > h; moreover by (i:a) and one of the sentences (i:c)
in Γ� i + 1, htp(t + pt′) 6 h + 1 and hence htp(vi + t′) 6 h. This deduces
htp(vi+ t′) = h from Th(A,B)KM ∪ (Γ�i+1). We infer htp(vi+ t′(v̄′; b̄)) = h.

Finally we show (d). Since t is in Term(i, B) and t′ is in Term(i), (c) in
the induction hypothesis shows that the p-heights of pvi + pt′(v̄′; b̄)) and
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t+ pt′(v̄′; b̄) are determined by Th(A,B)KM ∪Γ�i. Since Th(A,B)KM ∪Γ is
assumed finitely consistent, these heights are determined consistently with
the formulas (i:c) in Γ. The conclusion follows. �

Lemma 3.9 Suppose Γ is a KM(A,B) schedule of length α, and for some i < α,
ā is a KM(A,B) sequence of length i which satisfies Γ�i. Then there is c̄ such that
ā_c̄ is a KM(A,B) sequence satisfying Γ.

Proof. We begin by changing notation; we write ā0 for the sequence ā
of the lemma. We will construct a KM(A,B) sequence ā of length α in A so
that

(a) ā�i = ā0 and

(b) for every j < α, ā�j satisfies Γ�j.

We proceed by induction on j > i. When j = i we choose ā � i to be ā0;
then (a) holds, and (b) follows from (a) and the lemma assumption. There is
nothing to do at limit ordinals. So we assume (b) when j is k and i 6 k < α,
and we find ak to make (b) true when j = k + 1.

More precisely we assume that

A |=
(∧

Γ�k
)

(ā�k)

and we find an element ak so that

A |=
(∧

∆
)

(ā�k + 1)

where
∧

∆ consists of the formulas (k:a), (k:b) and (k:c) of Lemma 3.6. By
the equivalence of (2) and (3) in Lemma 3.6, it will suffice to show that
(ā�k + 1) satisfies

(k:a) pvi = t(v̄�k),

(k:b)− htp(vk) > h

(where t and h are as determined by Γ) and the formulas of (k:c)− from
Lemma 3.6.

Now the formulas of (k:c)− have their free variables in v̄ �k, so we al-
ready know from Lemma 3.8(d) that ā �k + 1 will satisfy the formulas of
(k:c)−, regardless of the choice of ak.
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The formulas (k:a) and (k:b) together entail that t has p-height at least
h + 1. But by Lemma 3.8(c), the set Th(A,B)KM ∪ Γ � k determines the
p-height of t, so by the finite consistency of Th(A,B)KM ∪ Γ it follows that

Th(A,B)KM ∪ Γ�i ` htp(t) > h+ 1.

Thus by induction assumption

A |= htp(t(ā�k)) > h+ 1

and hence there is an element d inA such that ph+1d = t(ā�k). Put ak = phd.
Then pak = t(ā�k) and htp(ak) > h, so that (ā�k+ 1) satisfies (k:a) and (k:b)
as required. �

The following corollary shows the sense in which the model-theoretic
notion of a KM(A,B) schedule captures the algebraic notion of a KM(A,B)
sequence.

Corollary 3.10 Assume (†), and let Γ be a set of formulas of L(P,B). Then the
following are equivalent:

(a) Γ is a KM(A,B) schedule (i.e. a KM(A,B) preschedule which is finitely
consistent with Th(A,B)KM ).

(b) Γ is the schedule of some KM(A,B) sequence.

(c) Γ is a KM(A,B) preschedule which is satisfied in A by some sequence.

Moreover any sequence of length α which satisfies a KM(A,B) preschedule of
length α in A is a KM(A,B) sequence.

Proof. (a) ⇒ (b) is by Lemma 3.9. (b) ⇒ (c) is immediate. (c) ⇒ (a) is
because A is a model of Th(A,B)KM . The last sentence is by (2) ⇒ (1) in
Lemma 3.6. �

3.4 Construction of automorphisms over P

Lemma 3.11 Assume (†). If ā and c̄ are KM(A,B) sequences with the same
schedule of length i, then there is an automorphism of A which takes ā to c̄ and
fixes B pointwise.

Proof. We extend ā and c̄ back and forth. More precisely, rename the
two sequences in the lemma ā0 and c̄0. We define, by induction on j > i,
sequences ā and c̄ so that

13



(a) ā�i = ā0 and c̄�i = c̄,

(b) for each j, ā�j and c̄�j are KM(A,B) sequences with the same sched-
ule.

When j = i, we ensure (a) by defining ā�i and c̄�i to be ā0 and c̄0 respec-
tively, and then (b) holds by the lemma assumption. At limit ordinals there
is nothing to do. The procedure will halt when we reach a j such that each
of ā�j and c̄�j generates A over B.

Assume then that we have defined ā�k and c̄�k so that (b) above holds
when j = k. By assumption at least one of ā�k and c̄�k fails to generate
A over B; by symmetry we can assume it is ā�k. Then as in the proof of
Lemma 3.3, there is an element ak of A which is proper over 〈ā�k〉+B, and
(ā�k + 1) is a KM(A,B) sequence. Let Γ be the schedule of (ā�k + 1). Then
by (b), c̄�k satisfies the schedule Γ�k. So by Lemma 3.9 there is ck so that
(c̄�k + 1) satisfies Γ. Hence we have (b) for j = k + 1 as required.

By Lemma 3.2 the procedure must eventually halt, say when ā and c̄
have length α. At this point each of ā and c̄ generates A over B. Again by
Lemma 3.2 we can define a set-theoretic map f by putting f(aj) = cj for
each j < α and f(b) = b for each b ∈ B. To show that f generates an auto-
morphism g of A, it suffices to show that for each term t(v̄) in Term(α,B),

A |= t(ā) = 0↔ t(c̄) = 0.

This follows from Lemma 3.8(a), since ā and c̄ satisfy the same schedule.
Then gā0 = c̄0 and g fixes B pointwise, since these are both true for f , and
g extends f . �

3.5 Canonical definitions

Assume (†) throughout this subsection.
If ā is a finite KM(A,B) sequence in A, then the schedule of ā is a finite

set of formulas. Writing their conjunction as a formula γ(v̄), we call γ a
schedule formula.

Lemma 3.12 Let ā be a finite KM(A,B) sequence with schedule formula γ(v̄).
Then

Th(A,B), γ `
∧

tp(ā/B).

Proof. Suppose φ(v̄) is a formula in tp(ā/B). If

Th(A,B) ∪ {γ(v̄),¬φ(v̄)}
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is consistent, then ∃v̄(γ(v̄) ∧ ¬φ(v̄)) is consistent with the complete theory
Th(A,B) and hence is a consequence of Th(A,B). So there is a tuple c̄ in A
such that

A |= γ(c̄) ∧ ¬φ(c̄).

Since both ā and c̄ satisfy the same schedule formula γ, by Lemma 3.11
there is an automorphism of A fixing B pointwise and taking c̄ to ā. But
then ā satisfies ¬φ, contradicting the choice of φ as a formula in tp(ā/B). �

Remark 3.13 Suppose γ(v̄, b̄) is a KM(A,B) schedule formula, where we
have exhibited as b̄ the elements of B in the support of the schedule. If b̄′ is
another tuple fromB, when is γ(v̄, b̄′) also a schedule formula? The answer
is in Corollary 3.10: when ∃v̄γ(x̄, b̄′) is consistent with Th(A,B)KM . This
holds for example whenever M |= ∃v̄γ(x̄, b̄′).

For the rest of this subsection, suppose ā is a KM(A,B) sequence of
length α, and Γ is the schedule of ā. We can define closed subsets W of α
as in the proof of Lemma 3.4. In fact they can be defined in terms of Γ
rather than ā: we require that for each i ∈W , if t is the term in (i:a) then the
indices of the variables in t are inW . (This could introduce some redundant
ordinals, but no matter.) Then if W is a nonempty closed subset of α, we
can define a restriction ΓW of Γ to W : ΓW contains, for each i ∈ W , the
formulas (i:a) and (i:b) of Γ together with those formulas (i:c) where the
term t′ uses only indices in W ∩ i. Then collapse the indices of variables
in these formulas, in an order-preserving way, to an initial segment of the
ordinals. The result is again a KM(A,B) schedule, and it is the schedule of
the KM(A,B) sequence got in the proof of Lemma 3.4 by restricting ā to the
indices in W . In this sense, if X is any finite subset of α, then Γ contains
a finite KM(A,B) schedule which includes the information about all the
elements vi with i ∈ X .

Remark 3.14 The construction above allows us to extend Lemma 3.12 to ar-
bitrary KM(A,B) sequences. If ā is such a sequence with schedule Γ, then to
show that Th(A,B)∪Γ entails tp(ā/B), it suffices to show that Th(A,B)∪Γ
entails tp(ā′/B) for each finite subsequence ā′ of ā. But each such subse-
quence is covered by a sub-schedule of Γ as above, and so Lemma 3.12
gives the result for ā′. Note that in general it would be impossible to apply
the same argument directly to Γ itself, since we have made no saturation
assumptions and Γ may have infinitely many variables.
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Suppose next that ā generates A over B. Let c̄ = (c0, . . . , cn−1) be an n-
tuple of elements of A. Then (for example by Lemma 3.4) there are a finite
subsequence d̄ of ā and a tuple b̄1 of elements of B, and terms t0, . . . , tn−1

in the language of abelian groups such that

(a) d̄ is a KM(A,B) sequence, and

(b) (c0 = t0(d̄, b̄1)) ∧ . . . ∧ (cn−1 = tn−1(d̄, b̄1)).

We abbreviate the formula in (b) to (c̄ = t̄(d̄, b̄1)). Let γ(v̄, b̄2) be a schedule
formula of d̄, and let θ(x̄) be the formula

∃v̄(γ(v̄, b̄2) ∧ (x̄ = t̄(d̄, b̄1))).

In practice we can generally amalgamate b̄1 and b̄2 into a single tuple b̄
and write θ as θ(x̄, b̄). We describe a formula θ(x̄, b̄) constructed according
to this recipe as a canonical definition of c̄, or a canonical ā-definition of c̄ to
indicate the KM(A,B) sequence that was used.

Lemma 3.15 Assume (†). Let θ(x̄, b̄) be a canonical definition of a tuple in A. If
c̄0 and c̄1 are two sequences in A that satisfy θ, then there is an automorphism of
A taking c̄0 to c̄1 and fixing B pointwise.

Proof. Unpacking θ, there are d̄0 and d̄1 in A so that

A |= γ(d̄k, b̄2) ∧ (c̄k = t̄(d̄, b̄1)) (k < 2).

Then d̄0 and d̄1 have the same schedule, so by Lemma 3.11 there is an auto-
morphism f of A taking d̄0 to d̄1 and fixing B pointwise. Then

c̄1 = t̄(d̄1, b̄1) = t̄(f(d̄0), f(b̄1)) = f(t̄(d̄0, b̄1)) = f(c̄0).

�

4 Proof of Gaifman’s conjecture for a tight extension
and one prime

Throughout this section, the complete L(P )-theory T is a relatively cate-
gorical theory of abelian group pairs, and there are a prime p and a natural
number h0 such that for every model M of T , the exponent of M/MP is ph0

and M is tight over MP . At the end of this section we will show that for
every model B of TP there is a model A of T with AP = B. Up to but not
including the main theorem, Theorem 4.9 we will assume the following:
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Convention 4.1 The abelian group B is a model of TP . Moreover there is
a model M of T with N = MP , such that B is an elementary substructure
of N . We can construct a KM(M,N ) sequence āB which has support in B
and is maximal with this property (since limit steps in the construction add
no new support). Let α be the length of āB . Then by Lemma 3.3 we can
extend āB to a KM(M,N ) sequence ā which generates M over N . Let β be
the length of ā. Let A be the subgroup of M generated by āB and B, i.e.
A = 〈āB〉 + B. We make A into an abelian group pair by putting AP = B.
For the rest of this section the following items remain fixed: M , N , B, ā, α,
β, A.

Note that Convention 4.1 includes (†) from the end of section 2 above,
but with M,N in place of A,B. It will be a major step to prove in Corollary
4.6 that (†) holds for A,B as well.

Lemma 4.2 Assuming Convention 4.1, we have AP = B.

Proof. Since A inherits its L(P )-structure from M , AP = A ∩ N . Then
Convention 4.1 gives at once thatB ⊆ A∩N . It remains to showA∩N ⊆ B.
If this fails, there is some first i < α such that some b ∈ N \B can be written
in the form mai + c where c is in 〈ā�i〉+B. As usual, m can be assumed to
be 1. But then ai = b − c, where b − c lies in 〈ā�i〉 + N . Since ā is assumed
to be a KM(M,N ) sequence, this contradicts Lemma 3.2. �

In the following lemma we introduce an important technique, using the
fact that B 4 N to slide tuples of elements from N into B. To lead the eye,
I underline the elements from N that need to be slid into B. So an element
b ∈ N becomes replaced by b ∈ B.

Lemma 4.3 Assume Convention 4.1. Let c̄ be elements of A and b̄′ elements of
N , and φ a first-order formula. If

M |= φ(c̄, b̄)

then there are b̄ in B such that

M |= φ(c̄, b̄).

Proof. Let θ(x̄) be a canonical ā-definition of c̄ in M . Since ā is in A, we
can write θ as θ(x̄, b̄0) where b̄0 is in B. Hence

M |= ∃x̄ (θ(x̄, b̄0) ∧ φ(x̄, b̄)).
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Since T is relatively categorical, we can apply the Reduction Property from
Fact 2.1:

N |= (∃x̄ (θ(x̄, b̄0) ∧ φ(x̄, b̄)))◦.

Since B 4 N , there is b̄ in B such that

N |= (∃x̄ (θ(x̄, b̄0) ∧ φ(x̄, b̄)))◦

and so by the Reduction Property again

M |= ∃x̄ (θ(x̄, b̄0) ∧ φ(x̄, b̄)).

This tells us that there is ā1 in M such that

M |= θ(ā1, b̄0) ∧ φ(ā1, b̄).

Since c̄ and ā1 satisfy the same canonical definition in M , by Lemma 3.15
there is an automorphism of M which takes ā1 to c̄ and pointwise fixes B.
Then

M |= φ(c̄, b̄)

as required. �

Lemma 4.4 Assume Convention 4.1. Let c be an element of A, h a finite number
and a an element of M of p-height h such that pa = c. Then there is an element
a′ ∈ A of p-height > h such that pa′ = c. Moreover if a is not in N then a′ can be
found not in B.

Proof. Case One: a ∈ A+N . Put a = a1 + b with a1 ∈ A and b ∈ N . Let
φ(x, y, z) be the formula

p(y + z) = x ∧ htp(y + z) > h.

Then

M |= φ(c, a1, b).

By Lemma 4.3 there is b ∈ B such that

M |= φ(c, a1, b)

and so a′ = a1 + b meets our requirements. If a is not in N , then add to φ
the conjunct

¬P (y + z).
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Case Two: a /∈ A+N . Consider the set of pairs (a?, e?) where htp(a?) >
h, a? /∈ A + N , e? ∈ A + N and pa? = c. The set is not empty, since it
contains (a, 0). For each such pair, a? + e? is not in N , so that its p-height
is at most h0 − 1. So there is such a pair (a?, e?) for which the p-height of
a? + e? has maximal value, say the finite value h? > h.

Fixing this pair (a?, e?), write e? as a1 + b where a1 is in A and b is in N .
Let ψ(x, y, z, w) be the formula

pw = x ∧ htp(w) > h ∧ htp(w + y + z) = h?.

Then

M |= ∃w ψ(c, a1, b, w).

Hence by Lemma 4.3 there are b in B and a′′ in M such that

M |= ψ(c, a1, b, a
′′).

If a′′ is not in A+N then neither is a′′ + a1 + b, and moreover a′′ + a1 + b is
proper overA+N by the choice of h′. So since p(a′′+a1+b) = c+pa1+pb ∈
A+B, we can extend ā�α to a longer KM(M,N )-sequence overB by putting
aα = a′′+a1 + b. This contradicts the choice of ā�α = āB in Convention 4.1.
Therefore a′′ ∈ A+N and we can revert to Case One. If a /∈ N , then again
we can ensure that a′′ /∈ N by adding a suitable conjunct to ψ. �

Lemma 4.5 Assume Convention 4.1. Then p-heights are preserved between M
and A.

Proof. Let h be a positive integer and a an element of A with p-height
> h in M . We claim:

For every i 6 h there is d ∈M such that phd = a and ph−id ∈ A.

The proof is by induction on i.
For i = 0 the claim holds by assumption. Assuming the claim for i =

k < h we prove it for i = k + 1 as follows. By assumption there are d ∈ M
and c ∈ A such that c = ph−kd and pkc = a. Then ph−k−1d, which exists
since k < h, is an element a′ such that pa′ = c and a′ has p-height> h−k−1
in M . By Lemma 4.4 there is such an element a′′ in A′; so for some d′ ∈ M ,
ph−(k+1)d′ = a′′ ∈ A and pk+1a′′ = pkc = a. This proves the claim for
i = k + 1.

Hence the claim holds. When i = h it says that a has p-height > h in A.
�
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Corollary 4.6 Assume Convention 4.1. Then:

(a) A/AP has exponent ph0 .

(b) A is tight over AP .

(c) (†) holds for both (M,N) and (A,B), with the same value of h0.

(d) Th(A,B)KM = Th(M,N)KM ∩ L(P,B).

Proof. (a) Since A ⊆ M , A/AP certainly has exponent at most ph0 . To
show that the exponent ofA/AP is at least ph0 , consider an element d1 inM
such that ph0d1 ∈ N but ph0−1d1 /∈ N . By Lemma 4.3 there is an element d2

inM such that ph0d2 ∈ B but ph0−1d2 /∈ N . Then by Lemma 4.4 (putting a =
ph0−1d2) there is an element a′ in A /∈ B such that pa′ ∈ B and htMp (a′) >
h0 − 1. But by Lemma 4.5, htMp (a′) = htAp (a′). This shows that A/AP has
exponent at least ph0 .

(b) Suppose a ∈ A and a ∈ pkA[p]. Then a ∈ pkM [p], and so by the
tightness of M over N , a can be written as pk+1c+ b with c ∈M and b ∈ N .
Hence

M |= htp(a− b) > k + 1.

By Lemma 4.3 there is b ∈ B such that

M |= htp(a− b) > k + 1,

so by Lemma 4.5

htAp (a− b) = htMp (a− b) > k + 1

and thus a ∈ pk+1A+B as required.
(c) is checked from (a), (b) and the text of (†) at the end of section 2..
For (d) we check the clauses of Definition 3.5. Clause (a) is clear. Clause

(b) is by (a) and (b) above. Clauses (c) and (d) are because the formulas
involved are quantifier-free. Clause (e) is by Lemma 4.5. �

Corollary 4.6(d) tells us that

M |=
∧

Th(A,B)KM .

If we can raise this result to

M |=
∧

Th(A,B)

then we are home. The next two lemmas carry out this raising.
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Lemma 4.7 Assume Convention 4.1. Then:

(a) Let Γ be a KM(A,B) preschedule and ā a sequence in A. Then

A |=
∧

Γ(ā) ⇔ M |=
∧

Γ(ā).

(b) A set of formulas of L(P,B) is a KM(A,B) schedule if and only if it is a
KM(M,N ) schedule.

(c) Every KM(A,B) sequence is a KM(M,N ) sequence.

Proof. (a) We show that for every formula φ in Γ,

A |= φ(ā) ⇔ M |= φ(ā).

If φ is a formula (i:a) then this holds because φ is atomic. If φ is a formula
(i:b) then it holds because of Lemma 4.5. If φ is a formula in (i:c) then the
implication holds from right to left because φ is a ∀ formula; the implication
from left to right holds by Lemma 4.3.

(b) By Lemma 4.6 the exponent ph0 is the same forM/N as it is forA/B.
It follows by Definition 3.7(a) that Γ is a KM(A,B) preschedule if and only
if it is a KM(M,N ) preschedule. If Γ is a KM(A,B) schedule, then by Corol-
lary 3.10 it is satisfied in A by some sequence ā, and hence by (a) above, ā
satisfies it in M too, so that by Lemma 3.6 ā is a KM(M,N ) sequence with
KM(M,N ) schedule Γ. Conversely if Γ is a KM(M,N ) schedule, then Γ
is finitely consistent with Th(M,N)KM , and hence with Th(A,B)KM since
Th(A,B)KM ⊆ Th(K,M)KM by Corollary 4.6(d). Hence Γ is a KM(A,B)
schedule.

(c) If c̄ is a KM(A,B) sequence, the schedule Γ of c̄ in A is a KM(A,B)
schedule in L(P,B), so by (b) it is a KM(M,N ) schedule. By (a), c̄ satisfies
Γ in M too, so c̄ is a KM(M,N ) sequence. �

Lemma 4.8 Assume Convention 4.1. Then A 4M .

Proof. To apply the Tarski-Vaught criterion for elementary substruc-
tures, let c̄ be a tuple of elements of A and φ a formula of L(P ) such that for
some a ∈M ,

M |= φ(c̄, a).

It suffices to find an element a′ ∈ A such that

M |= φ(c̄, a′)
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We convert the question into one about KM sequences. First, since c̄ is in
A there is a finite subsequence ā1 of ā �α such that c̄ lies in 〈ā1〉 + B and
ā1 is a KM(M,N ) sequence. Second, there is a finite subsequence ā?2 of ā
such that a lies in 〈ā?2〉+N and ā?2 is a KM(M,N ) sequence. We can choose
ā?2 so that it includes ā1, and then without loss we can expand ā1 to be the
part of ā?2 that lies in ā � α. Write ā?2 as ā1

_ā2. Let γ2(v̄1v̄2, b̄1, b̄2) be the
schedule formula of ā1

_ā2, where b̄1 is in B and b̄2 is in N \ B. A part of
γ2(v̄1v̄2, b̄1, b̄2) forms the schedule formula γ1(v̄1, b̄1) of ā1, in such a way
that

` ∀v̄1∀v̄2∀z̄1∀z̄2 (γ2(v̄1, v̄2, z̄1, z̄2)→ γ1(v̄1, z̄1)).

(See the discussion before Remark 3.14 above.) Finally there are abelian
group terms t̄1, t2 such that

M |= (c̄ = t̄1(ā1)) ∧ (a = t2(ā1, ā2).)

We assemble all this information and quantify:

M |= ∃v̄1v̄2 (φ(t̄1(v̄1), t2(v̄1, v̄2)) ∧ γ2(v̄1, v̄2, b̄1, b̄2)).

From this point onwards we proceed by a series of seven claims.

Claim One. There are b̄2 in B and ā′′1, ā
′′
2 in M such that

M |= φ(t̄1(ā′′1), t2(ā′′1, ā
′′
2)) ∧ γ2(ā′′1, ā

′′
2, b̄1, b̄2).

This is by Lemma 4.3.

Claim Two. γ2(v̄1, v̄2, b̄1, b̄2) and and γ1(v̄1, b̄1) are KM(M,N ) schedule
formulas. This claim holds for γ2 by Remark 3.13 and Claim One, and for
γ1 by its definition.

Claim Three. γ2(v̄1, v̄2, b̄1, b̄2) and γ1(v̄1, b̄1) are KM(A,B) schedule for-
mulas. This claim holds by Lemma 4.7(b).

Claim Four. ā1 satisfies γ1(v̄1, b̄1) in A. To show this, note first that

M |= γ1(ā1, b̄1)

by the choice of γ1 and b̄1. Then apply Lemma 4.7(a).

Claim Five. There is ā′2 in A such that

A |= γ2(ā1, ā
′
2, b̄1, b̄2).
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so that ā1
_ā2 is a KM(A,B) sequence. This is by Lemma 3.9, Claims Three

and Four and the relationship between γ1 and γ2.

Claim Six. There are a KM(M,N ) sequence ā′3 which generates M and
extends ā1

_ā′2 and a KM(M,N ) sequence ā′′3 which has the same schedule
as ā′3 and extends ā′′1

_ā′′2 . To prove the first part, ā1
_ā′2 is a KM(M,N )

sequence by Claim Five and Lemma 4.7(c), so we can find ā′3 by Lemma
3.3. Then we can find ā′′3 by Lemma 3.9.

Claim Seven. There is an automorphism f of M which takes ā′′1
_ā′′2 to

ā1
_ā′2.

This is by Claim Six and Lemma 3.11.

With these claims we are home. Let f be as in Claim Seven, and put
a′ = t2(ā1, ā

′
2) = f(t2(ā′′1, ā

′′
2)). By choice of ā1 and Claim Five, ā1 and ā′2

are in A, so a′ is in A. Applying the automorphism f to Claim One, and
recalling that c̄ = t̄1(ā1) in M ,

M |= φ(c̄, a′).

�

Theorem 4.9 Let T be a relatively categorical theory of abelian group pairs, such
that for some prime p, if A is any model of T then A is tight and p-bounded over
AP . Then for every model B of TP there is a model A of T with AP = B.

Proof. Take κ > |B|. Let M be a κ-saturated model of T , and define N
to beMP . SinceM was κ-saturated, so isN , and hence we can elementarily
embed B in N . With the usual adjustments we can assume B 4 N . Now
we can define ā, α, β,A as in Convention 4.1. Then by Lemma 4.8, A 4 M
and so the theorem is proved. �

5 Proof of Gaifman’s conjecture for relatively categor-
ical abelian group pairs

5.1 Module-like structures and their pushouts

Definition 5.1

(a) Given a first-order languageL, anL-structure and a formula φ(v0, . . . , vn−1)
of L, we write φ(An) for the set of all n-tuples ā in A such that A |= φ(ā).
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(b) A formula is positive primitive, for short pp, if it has the form

∃x̄ (φ0 ∧ . . . ∧ φn−1)

where each φi is atomic. (Here atomic means equations and relational for-
mulas R(v̄), not including ⊥.)

(c) We say that an L-structure A is module-like if L has a binary function
symbol +, A forms an abelian group under +, and for every pp formula
φ(v0, . . . , vn−1) ofLwithout parameters, φ(An) is a subgroup of the product
abelian group An.

(d) A first-order theory T is module-like if all its models are module-like
(with respect to the same symbol +).

(e) The Baur-Monk invariants of a module-like structure A are the numbers
|φ(A)/ψ(A)∩ φ(A)|, where φ and ψ are pp formulas with one free variable,
and the numbers are taken as either finite or ∞. Since the conjunction of
two pp formulas is logically equivalent to a single pp formula, there is no
loss in considering only invariants |φ(A)/ψ(A)|where ` ψ → φ.

We note that every abelian group pair is a module-like structure, so that
any theory of abelian group pairs is module-like. Module-like theories sat-
isfy the Baur-Monk quantifier elimination theorem, cf. [6] Theorem A.1.1,
page 654. One corollary of this fact is the following criterion for elementary
embedding.

Fact 5.2 Let T be a module-like theory in a language L and f : A → M a homo-
morphism between models of T . Then f is an elementary embedding of A in M if
and only if:

(a) For every pp formula φ(v̄) of L and tuple ā in A, if M |= φ(fā) then
A |= φ(ā), and

(b) for each Baur-Monk invariant |φ/ψ|,∣∣∣∣φ(A)
ψ(A)

∣∣∣∣ > ∣∣∣∣φ(M)
ψ(M)

∣∣∣∣ .
Proof. If f is an elementary embedding then (a) and (b) are easily

checked. For the converse we use a result essentially due to Gabriel Sab-
bagh in the case of modules (cf. [6] Corollary A.1.3, page 656). Namely, if
f is an embedding and (a) holds and (b) holds with = in place of >, then
f is elementary. Now if (a) holds then f is an embedding. Also if (a) holds
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then (b) holds with 6 for >. For suppose |φ(A)/ψ(A)| > m. Then there
are a0, . . . , am−1 in φ(A) such that for all i < j < m, ai − aj /∈ ψ(A). But
by (a) the elements fa0, . . . , fam−1 have the same properties in M , so that
|φ(M)/ψ(M)| too. So to satisfy Sabbagh’s criterion it suffices to prove (a)
and (b). �

Let T be a module-like theory in a language L. We define pushouts of
models of T as follows. (The essentials are in Fuchs [3] section 10. There
may be fuller accounts in some recent theoretical computer science texts.)

Definition 5.3 Let A0, . . . , An−1 be models of T , and suppose that some L-
structure B is a substructure of each Ai (i < n). Let Π be the direct product

Π = A0 × . . .×An−1.

Let K be the subgroup of Π generated by the elements (b0, . . . , bn−1) of Bn

such that b0 + . . . + bn−1 = 0. The pushout of A0, . . . , An−1 over B is the
structure Π/K. For each i < n we write ιi : Ai → A for the induced homo-
morphism taking ai to (0, . . . , 0, ai, 0, . . . , 0) + K. Since B is a substructure
of each Ai, each ιi is injective (cf. [3] Theorem 10.2).

Fact 5.4 Pushouts have the following universal mapping property. Let A be the
pushout of A0, . . . , An−1 over B. Suppose that D is a module-like structure for
the same language as A, and for each i < n there is a homomorphism gi : Ai → D
such that if i, j < n and b ∈ B then gi(b) = gj(b). Then there is a unique
homomorphism f : A → D such that for each i < n, gi = f.ιi. (Again see [3]
Theorem 10.2.)

We consider the following situation. Abelian group pairs M0, . . . ,Mn−1

are given, with an abelian group N = MP
i for each i < n, and M is the

pushout of theMi overN . Also abelian group pairsA0, . . . , An−1 are given,
with an abelian group B = APi for each i < n, and A is the pushout of the
Ai over B. We have B 4 N and Ai 4 Mi for each i < n. We illustrate with
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n = 2 in the following diagram:

N �
���

���:

XXXXXXXXXz

B

6

4

���
���

�:

XXXXXXXXXz

M0 XXXXXXXXXz

M1
���

���
�:

A0

4
6

XXXXXXXz

X

A1

6

4

��
���

��:

M

A

6

4?

By the universal mapping property in Fact 5.4 there is a homomorphism f :
A→M . We will prove, under suitable assumptions, that f is an elementary
embedding.

In view of the importance of pp formulas for applying Fact 5.2, we give
necessary and sufficient conditions for a tuple to satisfy a pp formula in the
pushout of a finite family of extensions of a module-like structure. For a
matrix C we write ρi(C) for the i-th row of C and κj(C) for the j-th column
of C. We write Σ(C) for the row matrix which is the sum of the rows of C,
and 0̄ for the row matrix consisting of zeros.

Lemma 5.5 Let A be the pushout of A0, . . . , An−1 over B, where all these struc-
tures are models of a module-like theory in a language L. Let φ(x0, . . . , xm−1) be
a pp formula of L. Let C be an n×m matrix (cij) such that for each i < n the i-th
row ρi(C) = (ci0, . . . , ci,m−1) is an m-tuple of elements of Ai. As above, we write
K for the substructure of A0× . . .×An−1 consisting of all n-tuples of elements of
B that sum to zero. Then the following are equivalent:

(1) A |= φ(κ0(C) + K, . . . , κm−1(C) + K).

(2) There is an n×m matrix H of elements of B so that

B |= Σ(H) = 0̄

and for each i < n

Ai |= φ(ρi(C) + ρi(H)).
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(3) (a) There is an n×m matrix H of elements of B so that for each i < n,

Ai |= φ(ρi(C) + ρi(H)),

and

(b) if G is any matrix of elements of B so that for each i < n,

Ai |= φ(ρi(C) + ρi(G))

then

B |= φ(Σ(G)).

Proof. (1)⇔ (2): (1) holds if and only if (κ0(C) + K, . . . , κm−1(C) + K)
is the image under Π 7→ Π/K of an m-tuple of elements of Π which satisfy
φ in Π, i.e. such that it satisfies φ at each of the n factors. This is what (2)
says.

(2)⇒ (3): Assuming (2), H certainly satisfies (3)(a). If G is a matrix over
B and for each i < n

Ai |= φ(ρi(C) + ρi(G))

then since φ defines an abelian group, for each i < n

B |= φ(ρi(H)− ρi(G))

and so

B |= φ(Σ(H)− Σ(G)).

But by (1), Σ(H) = 0̄ and so Σ(G) ∈ φ(Bm), proving (3)(b).
(3)⇒ (2): If H is as in (3)(a), then taking H for G in (3)(b) gives that

B |= φ(Σ(H)).

Form the matrix H ′ by subtracting Σ(H) from the first row of H . Then
Σ(H ′) = 0̄, and by the additivity of φ,

Ai |= φ(ρi(C) + ρi(H ′))

for each i < n. This proves (2) with H ′ for H . �

27



5.2 Proof of Gaifman’s conjecture

Theorem 5.6 Let T be a relatively categorical theory of abelian group pairs. If B
is a model of TP then there is a model A of T with AP = B.

Proof. By Fact 2.2 there are a relatively categorical theory T ′ and a finite
abelian group pair D0 with DP

0 = {0}, such that every model A of T is the
direct sum of a model C of T ′ and an isomorphic copy ofD0, and moreover
for any such C, AP = CP and C is tight over CP . So it will suffice to find
a model C of T ′ with CP = B and put A = C ⊕ D0. Then by Feferman-
Vaught, A is a model of T and AP = CP = B. The effect of this reduction
is that we need only prove the case of the theorem where every model A of
T is tight over AP . Henceforth we assume this is the case.

By Fact 2.3 there are primes p0, . . . , pn−1 and relatively categorical the-
ories T0, . . . , Tn−1 such that every model A of T is a pushout over AP of
modelsAi of Ti with APi = AP , each Ai/AP is a pi-group of finite exponent,
and each Ai is tight over AP .

Let B be a model of TP . Then by Theorem 4.9, for each i < n there is a
model Ai of Ti with B = APi . In fact the earlier arguments showed that if
we elementarily embedB inN = MP for some modelM of T , then eachAi
can be found as an elementary substructure of the componentMi ofM . Let
A be the pushout of the Ai’s over B. Then the universal mapping property
of pushouts gives us a homomorphism f : A → M as in the previous
section. To show that A is a model of T , and hence to prove Gaifman’s
conjecture, it suffices to show that f is an elementary embedding.

We will apply Fact 5.2. We write Π for the product A0 × . . . × An−1

and K for the kernel consisting of all m-tuples of elements of B which sum
to zero. We write Π+ for the product M0 × . . . × Mn−1 and K+ for the
set of all m-tuples of elements of N which sum to zero. So A = Π/K and
M = Π+/K+.

First we prove (a) in Fact 5.2. Let φ(x0, . . . , xn−1) be a pp formula and
C an n×m matrix of elements of C such that

M |= φ(f(κ0(C) + K), . . . , f(κ0(C) + K)). (1)

We need to show that

A |= φ(κ0(C) + K, . . . , κ0(C) + K). (2)

We can eliminate the f as follows. The pushout was constructed as a quo-
tient of the direct product, which happens also to be a direct sum when (as
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here) the number of factors is finite. There is a universal mapping theo-
rem for direct sums, which maps the product of the Ai’s into the product
of the Mi’s, and we can assume it is an inclusion map. Because of this, the
homomorphism f : A→M can be read as the map

ā+ K 7→ ā+ K+,

so that in place of (1) we can write

M |= φ(κ0(C) + K+, . . . , κ0(C) + K+). (3)

By (3) and (1) ⇒ (2) in Lemma 5.5 there is an n × m matrix H = (hij) of
elements of N so that

M |= Σ(H) = 0̄

and for each i,

Mi |= φ(ρi(C) + ρi(H)).

Now by the theory in earlier parts of this paper, each Mi is generated
over N by a KM(Mi, N ) sequence with an initial segment that generates
Ai over B. Also the Reduction Property from Fact 2.1 holds for each Ti;
we write ()◦ as ()◦i to show that we are dealing with Ti. Using canonical
definitions θi of ρi(C) in each Mi gives

N |= ∃z̄(Σz̄ = 0 ∧
∧
i<n

(∃w̄ (φ(w̄ + z̄(i)) ∧ θi(w̄, b̄i))◦i ) (4)

where z̄ represents an n ×m matrix. Since the i-th row of C is already in
Ai, the tuple b̄i inside the canonical definition of ρi(C) can be chosen inside
B. Since B 4 N , we infer that for some matrix H in B whose columns each
sum to zero,

B |=
∧
i<n

(∃w̄
(
φ(w̄ + ρi(H)) ∧ θi(w̄, b̄i)

)◦
i

(5)

and hence for each i < n there is c̄′i in Ai that satisfies the canonical defini-
tion of ρi(C) and

Ai |= φ(c̄′i + ρi(H)) ∧ θi(c̄′i, b̄i). (6)

So there is an automorphism of Ai taking c̄′i to ρi(C) and hence

Ai |= φ(ρi(C) + ρi(H)). (7)
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Given the requirement Σ(H) = 0̄, this is exactly the condition for

A |= φ(κ0(C) + K, . . . , κ0(C) + K). (8)

Thus (a) in Fact 5.2 holds.

Next we prove (b) in Fact 5.2. Let φ/ψ be a Baur-Monk invariant andm a
positive integer. We assume |φ(M)/ψ(M)| > m and we deduce |φ(A)/ψ(A)| >
m. By assumption there are elements c0, . . . , cm−1 of M such that

M |=
∧
j<m

φ(ck) ∧
∧

j<k<m

¬ψ(cj − ck). (9)

We translate this into a statement about the Mi by using (2) of Lemma 5.5
for φ and (3) of Lemma 5.5 for ψ. Thus, there is an n ×m matrix C = (cij)
such that each row consists of elements of Mi, and there is an n×m matrix
H = (hij) of elements of N with Σ(H) = 0̄, such that for each i < n,

Mi |=
∧
j<m

φ(cij + hij) (10)

but for every pair of indices (j, k) with j < k < m, either there is no n × 1
column matrix G = (g

i
) over N such that for each i < n,

Mi |= ψ(cij − cik + g
i
)

or there is such a G, but it satisfies

B |= ¬ψ(Σ(G)).

Let G be the set of pairs (j, k) where the ‘either’ case holds, and H the set
of the remaining pairs (j, k) with j < k < m (so that the ‘or’ case holds for
these pairs). For each (j, k) ∈ G there is i(j, k) < n such that

Mi(j,k) |= ∀z (P (z)→ ¬ψ(ci(j,k),j − ci(j,k),k + z)),

since otherwise we could refute the ‘either’ case by choosing each g
i

sepa-
rately.

To summarise the facts so far: There are a matrix H of elements of N ,
and for each pair (j, k) ∈ H there is a column matrixGjk = (gjk

i
) of elements

of N , such that the following hold:

(i) For each i < n

Mi |=
∧
j<m

φ(cij + hij),
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(ii) N |= Σ(H) = 0̄,

(iii) for each (j, k) ∈ G,

Mi(j,k) |= ∀z (P (z)→ ¬ψ(ci(j,k),j − ci(j,k),k + z)),

(iv) for each (j, k) ∈ H and each i < n,

Mi |= ψ(cij − cik + gjk
i

)

and

N |= ¬ψ(Σ(Gjk).

We can group the conditions here into n + 1 conjuncts: one for each Mi

and one for N . There is an implied quantifier ∃C over all of this. But the
requirements on the elements of C are now separate for each i < n, so
we can distribute them between the separate conjuncts. By the Reduction
Property we can state the conditions on each Mi as conditions on N . If for
example 0 is i(j, k) for just one pair in (j, k) ∈ G, namely (1, 2), then the
condition on M0 will have the form:

M0 |=
(
∃v̄
(∧

j<m φ(vj + hij)∧
∀z (P (z)→ ¬ψ(v1 − v2 + z))∧∧

(j,k)∈H ψ(vj − vk + gjk
i

)
))◦

i
.

Writing χi for the conjunct that deals with Mi (i < n) and χn for the con-
junction of the statements in (ii) and (iv) that refer to N , the whole state-
ment takes the form

N |= ∃H(∃Gjk)(j,k)∈H (χ0 ∧ . . . ∧ χn).

Since B 4 N ,

B |= ∃H(∃Gjk)(j,k)∈H (χ0 ∧ . . . ∧ χn).

Running the entire argument backwards, we find m elements in φ(A) such
that none of their differences are in ψ(A), and hence |φ(A)/ψ(A)| > m as
required. �

31



References

[1] Gisela Ahlbrandt and Martin Ziegler, ‘What’s so special about
(Z/4Z)ω?’, Archive for Mathematical Logic 31 (1991) 115–132.

[2] David Evans, Wilfrid Hodges and Ian Hodkinson, Automorphisms of
bounded abelian groups, Forum Mathematicum 3 (1991) 523–541.

[3] Laszlo Fuchs, Infinite Abelian Groups I, Academic Press, New York
1970.

[4] Laszlo Fuchs, Infinite Abelian Groups II, Academic Press, New York
1973.

[5] Haim Gaifman, ‘Operations on relational structures, functors and
classes I’, in Proceedings of the Tarski Symposium, ed. Leon Henkin et
al., American Mathematical Society, Providence RI 1974, pp. 21–39.

[6] Wilfrid Hodges, Model Theory, Cambridge University Press, Cam-
bridge 1993.

[7] Wilfrid Hodges and Anatoly Yakovlev, ’Relative categoricity in
abelian groups II’, Annals of Pure and Applied Logic 158 (2009) 203–231.

[8] I. Kaplansky and G. W. Mackey, ‘A generalization of Ulm’s theorem’,
Summa Brasil. Math. 2 (1951) 195–202.

[9] Saharon Shelah, Classification over a predicate II, in Around Classifi-
cation Theory of Models, Lecture Notes in Mathematics 1182, Springer,
Berlin 1986, pp. 47–90.

32


