
3

Some work I was doing when Sauro visited

A specification is

• a formal theory

• which defines

• the intended behaviour of a system (hardware, software
or both).

So it’s a species of definition.

4

A paradigm popular in the 1980s:

The behaviour of a system is a structure A.

The elements of A are the items of data
handled by the system.

Functions of A represent the response of the system
to data items.

In general the specification is parametrised, i.e.
the system is a function S(B, . . .) of one or more
previously specified systems B, . . ..

The model theory of specification

Wilfrid Hodges
Queen Mary, University of London

April 2006
www.maths.qmul.ac.uk/∼wilfrid/sauro.pdf

2

Sauro Tulipani and me

8 November 1983: S writes to W asking to visit
Bedford College London.

Summer 1984: Bedford College closes down.

1984/5: Correspondence between S and W influences
‘Building Models by Games’.

Autumn 1985: S visits W at Queen Mary and Westfield
College.

February 1990: S speaks to seminar at Queen Mary on
‘The first order theory of infinite terms’.



7

A specification is a theory T that determines a single model
(up to isomorphism) in terms of a given structure.

So in some sense T is ‘relatively categorical’.

Logicians have proposed using for specifications:

(a) first-order theories that are (say) ω-categorical;

(b) sentences of Lω1,ω.

Serious problems with both.

8

Two commercially successful answers:

I. A specification is a finite universal Horn (first-order)
theory T . The specified structure S(B) is the unique
initial model of the set of atomic consequences of

T ∪ diagram+(B).

This paradigm yields algebraic specification,
as in ACT TWO or CASL.
There is lots of universal algebra to build on.

5

Relations of the structure represent
tests performed on the data by the system.

append(textline,symbol) =


textline∩symbol if lh(textline) < LINELENGTH

textline∩LF∩symbol otherwise

6

This paradigm looks rather old today:

• One should distinguish the ports through which
the system interacts with other systems.
(Cf. Robin Milner passim.)

• The behaviour should develop through time
in response to the behaviours of other systems.
(Some people advocate games for studying this.)

But it’s still widely used.



11

Observation 1 (due to Peter Aczel for VDM):

In both algebraic and set-theoretic specification,
a homomorphism h : B → B′ induces a
homomorphism S(h) : S(B) → S(B′).

(For set-theoretic specification,
this is a consequence of the Σ+

1 form.)

Thus the ‘model’ of the specification is in fact a functor on
structures, say from finite signature Σ to finite signature Ω.

12

Observation 2: For algebraic specification, we can
characterise the functors S that occur, up to natural
equivalence, as follows (the ‘specification functors’).

There are a finite signature Π expanding Ω and Σ,
a functor F : ΣStr → ΠStr

and a functor G : ΠStr → ΩStr such that

• S = GF ,

• F is the left adjoint of a relativised reduct functor,

• G is a relativised reduct functor.

9

II. A specification is a Σ+

1 set-theoretic formula φ(x, y)

such that for each parameter structure B there is a unique
structure S(B) satisfying φ(B,S(B)).

This paradigm yields set-theoretic specification
as in the languages VDM, Z and B.

10

Problem for the theorist:

Here are two formalisations of the same intuitive notion.
Do they agree (and in what sense)?



15

Remarks continued:

• The proofs yield effective translations between
algebraic specifications and (restricted) set-theoretic
specifications.

The translation from set-theoretic specification to
algebraic specification was rediscovered by Hélène
Kirchner and Peter Mosses, published 2001,
who claim it as a ‘novelty’. (More below.)

16

Specification functors are no good as a semantics for
set-theoretic specification, for two reasons:

(a) They ignore the infinite sets.

(b) They ignore types (central in these formalisms).

The official semantics of Z uses relation algebras.
Martin Henson and Steve Reeves have an alternative
approach through ‘Z logic’, a form of type theory.
(It revises Z.)

13

Every functor of this type is (up to natural equivalence)
expressible in any of the standard set-theoretic
specification formalisms.

The converse fails, because of apparently essential
use of infinite sets in some specifications.

But inspection of a range of published Z specifications
produced few examples that don’t define specification
functors.

14

Remarks:

• Somehow computability is completely hidden in the
definition of a specification functor. But it’s there.
A characterisation of computability by Smullyan and
Fitting accounts for this.

• Anatoliı̌ Mal’tsev studied functors of this kind in an
algebraic context under the name ‘subreplicas’.
Example: tensor product of a pair of abelian groups.



19

• The clauses of a specification become in general
polymorphic.
(I.e. they are ambiguous about the types involved.)

• Chiefly because of polymorphism, the axioms required
to justify a specification are more complicated.
(I gave a simple set of axioms for the hereditarily finite
sets over a given structure.)

20

Turner has greatly improved my treatment of set-theoretic
specifications, but not extended the comparison with
algebraic specifications.

BUT Kirchner and Mosses (above) do essentially this.
Their novelty is not the translation of set theory into
universal Horn sentences, but

‘Types may be polymorphic, and include abstract
types as well as the concrete set-theoretical product,
power-set, and function types.’

(Actually they overreach. The ‘power set’ is a countable
subset of the power set, as in work of Karl Meinke.)

17

Ray Turner, ‘The foundations of specification’ (2005):

‘. . . Hodges has developed an approach to
specification based upon hereditarily finite set
theory. But he does not really consider the impact of
types; the present theory may be considered as an
attempt to explicitly put types into hereditarily finite
set theory — with all that that entails
(e.g. the need to take products as primitive, etc.).’

18

• Turner’s languages have a type structure, including
type variables and some fixed type constructors,
e.g. forming cartesian products and their projections.
(Since the types used are Σ+

1 -definable, I suspect the
functoriality lifts to this setting, but I haven’t checked.)

• The infinite sets used in Z become types.
(I believe this restricts the language,
though much less than I restricted it.)



23

• Hélène Kirchner and Peter Mosses, ‘Algebraic
specifications, higher-order types and set-theoretic
models’, Journal of Logic and Computation 11 (2001)
453–481.

• G. Marongiu and Sauro Tulipani, ‘Quantifier elimination
for infinite terms’, Archive for Mathematical Logic 31
(1991) 1–17.

• Raymond Turner, ‘The foundations of specification’,
Journal of Logic and Computation 15 (2005) 623–662.

21

There is much tidying up to do.

Probably I’m not the person to do it.

But if I try, it will be with Sauro in mind.

22

References

• Melvin Fitting, Computability Theory, Semantics, and Logic
Programming, Oxford University Press, New York 1987.

• Wilfrid Hodges, ‘The meaning of specifications I: Initial
models,’ Theoretical Computer Science 152 (1995) 67–89.

• Wilfrid Hodges, ‘The meaning of specifications II:
Set-theoretic specification’, Semantics of Programming
Languages and Model Theory, ed. Droste and Gurevich,
Gordon and Breach, Yverdon 1993, pp. 43–68.


